nonlinear control lecture 3 two dimensional systems
play

Nonlinear Control Lecture # 3 Two-Dimensional Systems Nonlinear - PowerPoint PPT Presentation

Nonlinear Control Lecture # 3 Two-Dimensional Systems Nonlinear Control Lecture # 3 Two-Dimensional Systems 1 Multiple Equilibria Example 2.2: Tunnel-diode circuit L i L i,mA X X s v + L 1


  1. Nonlinear Control Lecture # 3 Two-Dimensional Systems Nonlinear Control Lecture # 3 Two-Dimensional Systems

  2. 1 Multiple Equilibria Example 2.2: Tunnel-diode circuit L i � � � � � � L i,mA X X s � � v + L � 1 i i C C � � C C � � C R P P � i=h(v) � � P P P � � � R P P P 0.5 � � � P P + + J � v v R C J � C J � 0 � � E −0.5 0 0.5 1 v,V (a) (b) x 1 = v C , x 2 = i L Nonlinear Control Lecture # 3 Two-Dimensional Systems

  3. x 1 ˙ = 0 . 5[ − h ( x 1 ) + x 2 ] x 2 ˙ = 0 . 2( − x 1 − 1 . 5 x 2 + 1 . 2) h ( x 1 ) = 17 . 76 x 1 − 103 . 79 x 2 1 + 229 . 62 x 3 1 − 226 . 31 x 4 1 + 83 . 72 x 5 1 i R 1.2 1 0.8 Q 1 = (0 . 063 , 0 . 758) Q 2 Q1 0.6 Q 2 = (0 . 285 , 0 . 61) 0.4 Q 3 = (0 . 884 , 0 . 21) Q 3 0.2 0 0 0.5 1 vR Nonlinear Control Lecture # 3 Two-Dimensional Systems

  4. � − 0 . 5 h ′ ( x 1 ) � ∂f 0 . 5 ∂x = − 0 . 2 − 0 . 3 � � − 3 . 598 0 . 5 A 1 = Eigenvalues : − 3 . 57 , − 0 . 33 , − 0 . 2 − 0 . 3 � � 1 . 82 0 . 5 A 2 = , Eigenvalues : 1 . 77 , − 0 . 25 − 0 . 2 − 0 . 3 � − 1 . 427 � 0 . 5 A 3 = , Eigenvalues : − 1 . 33 , − 0 . 4 − 0 . 2 − 0 . 3 Q 1 is a stable node; Q 2 is a saddle; Q 3 is a stable node Nonlinear Control Lecture # 3 Two-Dimensional Systems

  5. x 2 1.6 1.4 1.2 1 0.8 Q1 Q 2 0.6 0.4 0.2 Q3 0 x1 −0.2 −0.4 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Nonlinear Control Lecture # 3 Two-Dimensional Systems

  6. Example 2.3: Pendulum x 1 = x 2 , ˙ x 2 = − sin x 1 − 0 . 3 x 2 ˙ Equilibrium points at ( nπ, 0) for n = 0 , ± 1 , ± 2 , . . . � � � � x 2 ∂f 0 1 f ( x ) = ∂x = , − sin x 1 − 0 . 3 x 2 − cos x 1 − 0 . 3 Nonlinear Control Lecture # 3 Two-Dimensional Systems

  7. ∂f � � 0 1 ∂x = − cos x 1 − 0 . 3 Linearization at (0 , 0) and ( π, 0) : � � 0 1 A 1 = ; Eigenvalues : − 0 . 15 ± j 0 . 9887 − 1 − 0 . 3 � 0 � 1 A 2 = ; Eigenvalues : − 1 . 1612 , 0 . 8612 1 − 0 . 3 (0 , 0) is a stable focus and ( π, 0) is a saddle Nonlinear Control Lecture # 3 Two-Dimensional Systems

  8. 4 x 2 3 B 2 A 1 0 x 1 −1 −2 −3 −4 −8 −6 −4 −2 0 2 4 6 8 Nonlinear Control Lecture # 3 Two-Dimensional Systems

  9. Oscillation A system oscillates when it has a nontrivial periodic solution x ( t + T ) = x ( t ) , ∀ t ≥ 0 Linear (Harmonic) Oscillator: � 0 � − β z = ˙ z β 0 z 1 ( t ) = r 0 cos( βt + θ 0 ) , z 2 ( t ) = r 0 sin( βt + θ 0 ) � z 2 (0) � � θ 0 = tan − 1 r 0 = z 2 1 (0) + z 2 2 (0) , z 1 (0) Nonlinear Control Lecture # 3 Two-Dimensional Systems

  10. The linear oscillation is not practical because It is not structurally stable. Infinitesimally small perturbations may change the type of the equilibrium point to a stable focus (decaying oscillation) or unstable focus (growing oscillation) The amplitude of oscillation depends on the initial conditions (The same problems exist with oscillation of nonlinear systems due to a center equilibrium point, e.g., pendulum without friction) Nonlinear Control Lecture # 3 Two-Dimensional Systems

  11. Limit Cycles Example: Negative Resistance Oscillator i ❳ ❳ ✘ ✘ + ✟ i = h(v) ✟ ✠ C L ✟ ✠ Resistive ✠ ✟ v ✠ Element ❈ ❈✄ i C ❈ ❈✄ i L ✄ ✄ v − (a) (b) Nonlinear Control Lecture # 3 Two-Dimensional Systems

  12. x 1 ˙ = x 2 ˙ = − x 1 − εh ′ ( x 1 ) x 2 x 2 There is a unique equilibrium point at the origin   0 1 � A = ∂f � = �   ∂x � − 1 − εh ′ (0) x =0 λ 2 + εh ′ (0) λ + 1 = 0 h ′ (0) < 0 ⇒ Unstable Focus or Unstable Node Nonlinear Control Lecture # 3 Two-Dimensional Systems

  13. Energy Analysis: E = 1 2 Cv 2 C + 1 2 Li 2 L i L = − h ( x 1 ) − 1 v C = x 1 and εx 2 2 C { x 2 1 + [ εh ( x 1 ) + x 2 ] 2 } E = 1 ˙ x 1 + [ εh ( x 1 ) + x 2 ][ εh ′ ( x 1 ) ˙ E = C { x 1 ˙ x 1 + ˙ x 2 ] } = C { x 1 x 2 + [ εh ( x 1 ) + x 2 ][ εh ′ ( x 1 ) x 2 − x 1 − εh ′ ( x 1 ) x 2 ] } = C [ x 1 x 2 − εx 1 h ( x 1 ) − x 1 x 2 ] = − εCx 1 h ( x 1 ) Nonlinear Control Lecture # 3 Two-Dimensional Systems

  14. −a x1 b ˙ E = − εCx 1 h ( x 1 ) Nonlinear Control Lecture # 3 Two-Dimensional Systems

  15. Example 2.4: Van der Pol Oscillator x 1 ˙ = x 2 − x 1 + ε (1 − x 2 ˙ = 1 ) x 2 x 2 4 x2 x2 3 3 2 2 1 1 0 0 x1 x1 −1 −1 −2 −2 −3 −2 0 2 4 −2 0 2 4 (a) (b) ε = 0 . 2 ε = 1 Nonlinear Control Lecture # 3 Two-Dimensional Systems

  16. 1 z 1 ˙ = εz 2 − ε ( z 1 − z 2 + 1 3 z 3 ˙ = 2 ) z 2 3 z2 x2 10 2 1 5 0 z1 0 −1 x1 −2 −5 −3 −5 0 5 10 −2 0 2 (a) (b) ε = 5 Nonlinear Control Lecture # 3 Two-Dimensional Systems

  17. x2 x2 x1 x1 (b) (a) Stable Limit Cycle Unstable Limit Cycle Nonlinear Control Lecture # 3 Two-Dimensional Systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend