non standard neutrinoless double beta decay and its
play

Non-Standard Neutrinoless Double Beta Decay and its Implications - PowerPoint PPT Presentation

Non-Standard Neutrinoless Double Beta Decay and its Implications Lukas Graf University College London ISS, 6th September 2017, Prague Introduction and Motivation neutrinos - neutral, left-handed, massive, light . . . = problem of


  1. Non-Standard Neutrinoless Double Beta Decay and its Implications Lukas Graf University College London ISS, 6th September 2017, Prague

  2. Introduction and Motivation • neutrinos - neutral, left-handed, massive, light . . . • = ⇒ problem of the Standard Model (SM) • Dirac or Majorana nature? • Majorana masses ⇐ ⇒ LNV ⇐ ⇒ neutrinoless double beta decay ( 0 νββ ) • massive right-handed neutrinos (seesaw mechanism) = ⇒ leptogenesis Lukas Graf Non-Standard Neutrinoless Double Beta Decay 2 / 23

  3. Neutrinoless Double Beta Decay > 2 . 1 × 10 25 y (GERDA) 76 Ge • current limit: T 1 / 2 > 1 . 07 × 10 26 y (KamLAND-Zen) 136 Xe T 1 / 2 • future experimental sensitivity: T 1 / 2 ∼ 6 . 6 × 10 27 y (nEXO) Lukas Graf Non-Standard Neutrinoless Double Beta Decay 3 / 23

  4. Neutrinoless Double Beta Decay • L 0 νββ = L LR + L SR , general Lagrangian in terms of effective couplings ǫ corresponding to the pointlike vertices at the Fermi scale • F. F. Deppisch, M. Hirsch, H. P¨ as: Neutrinoless Double Beta Decay and Physics Beyond the Standard Model , J. Phys. G 39 (2012), 124007 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 4 / 23

  5. General Lagrangian for 0 νββ • long-range part: L LR = G F � � ˜ J † V − Aµ j µ α,β ǫ β α J † , √ V − A + � α j β 2 where J † α = ¯ uO α d , j β = ¯ e O β ν and O V ± A = γ µ (1 ± γ 5 ) , O S ± P = (1 ± γ 5 ) , O T R,L = i 2 [ γ µ , γ ν ](1 ± γ 5 ) • short range part: L SR = G 2 [ ǫ 1 JJj + ǫ 2 J µν J µν j + ǫ 3 J µ J µ j + ǫ 4 J µ J µν j ν + ǫ 5 J µ Jj µ ] , F 2 m p where J = ¯ u (1 ± γ 5 ) d , J µ = ¯ uγ µ (1 ± γ 5 ) d , J µν = ¯ u i 2 [ γ µ , γ ν ](1 ± γ 5 ) d e (1 ± γ 5 ) e C j = ¯ j µ = ¯ eγ µ (1 ± γ 5 ) e C Lukas Graf Non-Standard Neutrinoless Double Beta Decay 5 / 23

  6. General Lagrangian for 0 νββ 1 / 2 = | ǫ β • connection to the experimental half-life: T − 1 α | 2 G i | M i | 2 • = ⇒ 0 νββ half-life sets constraints on effective couplings • accurate calculation of nuclear matrix elements (NMEs) and phase-space factors (PSFs) is crucial for this estimation Lukas Graf Non-Standard Neutrinoless Double Beta Decay 6 / 23

  7. Nuclear Matrix Elements and Phase-Space Factors for 0 νββ Decay • goal: a thorough theoretical description of non-standard 0 νββ decay mechanisms - involves NMEs and PSFs → a very complex, interdisciplinary project • understanding the nuclear and atomic parts of the process • older literature may cause a confusion (notations, mistakes, lack of explanation), but long-range part recently rigorously covered (checked) • = ⇒ similar analysis of the short-range part = ⇒ complete, consistent and cross-checked description of all contributions • application of the nuclear physics model (IBM2, maybe more), numerical calculation of NMEs • numerical computation of relevant PSFs Lukas Graf Non-Standard Neutrinoless Double Beta Decay 7 / 23

  8. Nuclear Matrix Elements and Phase-Space Factors for 0 νββ Decay - Approximations • complicated calculation - a number of approximations used (nucleon current approximation, non-relativistic approximation, closure approximation) � P • considering nucleon isodoublet N = � , the nucleon matrix N elements of the quark currents are � N ( p ′ ) � � N ( p ) τ + � F (3) ( q 2 ) ± F (3) � ¯ ( q 2 ) γ 5 � P ( p ) | ¯ u (1 ± γ 5 ) d = N ( n ) , � S P � � N ( p ′ ) � N ( p ) τ + � F (3) ( q 2 ) γ µ − iF (3) W ( q 2 ) σ µν q ν � uγ µ (1 ± γ 5 ) d ¯ � P ( p ) | ¯ = N ( n ) � V N ( p ) τ + � F (3) ( q 2 ) γ µ γ 5 − F (3) ( q 2 ) γ 5 q µ � ± ¯ N ( n ) , A P � i � J µν ± uσ µν (1 ± γ 5 ) d � � N ( p ′ ) � N ( p ) τ + ε µνρσ J ρσ ¯ � P ( p ) | ¯ = N ( n ) , � 2 where we have defined: i 1 J µν = T (3) ( q 2 ) σ µν + T (3) ( γ µ q ν − γ ν q µ ) + T (3) ( σ µρ q ρ q ν − σ νρ q ρ q µ ) . ( q 2 ) ( q 2 ) q 2 3 m 2 m p p Lukas Graf Non-Standard Neutrinoless Double Beta Decay 8 / 23

  9. Nuclear Matrix Elements and Phase-Space Factors for 0 νββ Decay - Approximations • non-relativistic limit then gives the resulting approximated nuclear bilinears � � 1 F (3) ± F (3) � τ a J S ± P = + δ ( x − r a ) ( σ a · q ) , S P S 2 m p a � � � �� F A F P J µ � τ a g µ 0 q 0 Q · σ a = + δ ( x − r a ) F V I a ± σ a · Q − V ± A 2 m p F A a � � � � � �� F V F W + g µi ∓ F A ( σ a ) i − Q I a − 1 − 2 m p i σ a × q , 2 m p F V i ( g µi g ν 0 − g µ 0 g νi ) T i J µν τ a + δ ( x − r a ) T (3) � a + g µj g νk ε ijk σ ai � = T ± T 5 1 a i � ε µνρσ ( g µi g ν 0 − g µ 0 g νi ) T ai + g µm g νn ε mni σ ai ± , 2 where we have defined:     T (3) i T i  q i I a + ( σ a × Q ) i 2  . a =  1 − 2  T (3) 2 m p 1 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 9 / 23

  10. Nuclear Matrix Elements and Phase-Space Factors for 0 νββ Decay • reaction matrix element � G cos θ C � 2 2 n p 2 s ′ p 1 s ′ � � � R SR � ¯ 2 1 = √ d x d y ψ ( y ) O l 2 P c ψ ( x ) e e 0 ν 2 i =1 d k � (2 π ) 3 � F | J l 1 c 1 i ( y ) J l 2 c 2 i ( x ) | I � e i k · ( y − x ) , × • = ⇒ a bunch of matrix elements to be computed M GT = � H ( r 12 )( σ 1 · σ 2 ) � ( M GT ) − 1 g 2 χ F = A � H ( r 12 ) � V g 2 ( M GT ) − 1 � ˜ χ GT ˜ = H ( r 12 )( σ 1 · σ 2 ) � ( M GT ) − 1 g 2 A � ˜ χ F ˜ = V H ( r 12 ) � g 2 ( M GT ) − 1 �− r 12 H ′ ( r 12 )( σ 1 · σ 2 ) � χ ′ = GT ( M GT ) − 1 g 2 χ ′ A �− r 12 H ′ ( r 12 ) � = V F g 2 � � ( M GT ) − 1 �− r 12 H ′ ( r 12 ) χ ′ r 12 ) − 1 = ( σ 1 · � r 12 )( σ 2 · � 3 ( σ 1 · σ 2 ) � T χ ′ ( M GT ) − 1 g V 2 r +12 H ′ ( r 12 ) i ( σ 1 − σ 2 ) · ( � g A �− 1 = r 12 × � r +12 ) � P µ β M ′ g V g A � H ′′ ( r 12 )( σ 1 · σ 2 ) � = R 3 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 10 / 23

  11. Nuclear Matrix Elements for 0 νββ Decay • T − 1 1 / 2 ≈ �R 0 ν � 2 • different nuclear physics models ... so far, quite different results ... • J. Engel, J. Men´ endez: Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review , arXiv: 1610.06548 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 11 / 23

  12. LNV Effective Operators • alternatively: 0 νββ can be described using SM effective field theories with ∆ L = 2 • a long list of eff. operators, odd dimensions: 5 , 7 , 9 , 11 , . . . • A. de Gouvea, J. Jenkins: A Survey of Lepton Number Violation Via Effective Operators , Phys. Rev. D 77 (2008), 013008 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 12 / 23

  13. LNV Effective Operators and L 0 νββ • correspondence between general 0 νββ decay Lagrangian and the set of ∆ L = 2 LNV effective operators Lukas Graf Non-Standard Neutrinoless Double Beta Decay 13 / 23

  14. LNV Effective Operators & 0 νββ decay • there is a variety of operators of different dimensions contributing (directly) to 0 νββ decay (employing certain type of mechanism) • all the ∆ L = 2 LNV effective operators can be related by SM Feynman rules • = ⇒ all of them contribute to 0 νββ decay in all possible ways • if we know the relations, we can determine the dominant contribution of every operator to 0 νββ decay via each possible channel Lukas Graf Non-Standard Neutrinoless Double Beta Decay 14 / 23

  15. LNV Effective Operators - Relations • example: a “web” of LNV effective operators of dimension 9 9 10 11,1 15 13 11,2 14,1 17 16 12,2 14,2 18 19 12,1 20 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 15 / 23

  16. LNV Effective Operators - Example • let’s consider operator O 60 = L i d c ¯ u c H j ¯ u c ¯ e c ¯ Q j ¯ H i (dim 11) Lukas Graf Non-Standard Neutrinoless Double Beta Decay 16 / 23

  17. LNV Effective Operators & 0 νββ • similar reduction can be done for each LNV effective operator • every operator can be related to all possible 0 νββ -decay-trigerring operators • automation - loop-closing algorithm, all possible contributions obtained, for some operators - quite a demanding computation • at the moment we are cross-checking the results, selecting the dominant ones, final results soon • resulting contributions - relations among operators’ scales and epsilons from L 0 νββ → use for further calculations Lukas Graf Non-Standard Neutrinoless Double Beta Decay 17 / 23

  18. LNV Operators and 0 νββ - Illustration • contributions to 0 νββ decay generated by the LNV effective operators in terms of effective vertices, point-like at the nuclear Fermi level scale • if 0 νββ is observed, the scale of the underlying operator can be determined • m e ǫ o 5 = v 2 , G F ǫ o 7 v √ = 2Λ 3 Λ 5 2 7 • G 2 � � , v 2 F ǫ { o 9 ,o 11 } 1 = Λ 5 Λ 7 2 m p 9 11 Lukas Graf Non-Standard Neutrinoless Double Beta Decay 18 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend