non accretive schr odinger operators and exponential
play

Non-accretive Schr odinger operators and exponential decay of their - PowerPoint PPT Presentation

Non-accretive Schr odinger operators and exponential decay of their eigenfunctions Petr Siegl Mathematical Institute, University of Bern, Switzerland http://gemma.ujf.cas.cz/siegl/ Based on [1] D. Krej ci r k, N. Raymond, J.


  1. Non-accretive Schr¨ odinger operators and exponential decay of their eigenfunctions Petr Siegl Mathematical Institute, University of Bern, Switzerland http://gemma.ujf.cas.cz/˜siegl/ Based on [1] D. Krejˇ ciˇ r´ ık, N. Raymond, J. Royer, and P. Siegl: Non-accretive Schr¨ odinger operators and exponential decay of their eigenfunctions Israel Journal of Mathematics, to appear arXiv:1605.02437

  2. Schr¨ odinger operators with complex potentials Main object • Dirichlet realization of L = ( − i ∇ + A ) 2 + V in L 2 (Ω) • Ω ⊂ R d open (no additional assumptions) • V ∈ C 1 (Ω; C ) and A ∈ C 2 (Ω; R d )

  3. Schr¨ odinger operators with complex potentials Main object • Dirichlet realization of L = ( − i ∇ + A ) 2 + V in L 2 (Ω) • Ω ⊂ R d open (no additional assumptions) • V ∈ C 1 (Ω; C ) and A ∈ C 2 (Ω; R d ) • restriction on the growth, oscillations and negative Re V : � � 3 2 + 1 |∇ V ( x ) | + |∇ B ( x ) | = o ( | V ( x ) | + | B ( x ) | ) , � � (Re V ( x )) − = o | V ( x ) | + | B ( x ) | + 1 , | x | → ∞ • where B = ( B jk ) j,k ∈{ 1 ,...,d } , B jk := ∂ j A k − ∂ k A j

  4. Schr¨ odinger operators with complex potentials Main object • Dirichlet realization of L = ( − i ∇ + A ) 2 + V in L 2 (Ω) • Ω ⊂ R d open (no additional assumptions) • V ∈ C 1 (Ω; C ) and A ∈ C 2 (Ω; R d ) • restriction on the growth, oscillations and negative Re V : � � 3 2 + 1 |∇ V ( x ) | + |∇ B ( x ) | = o ( | V ( x ) | + | B ( x ) | ) , � � (Re V ( x )) − = o | V ( x ) | + | B ( x ) | + 1 , | x | → ∞ • where B = ( B jk ) j,k ∈{ 1 ,...,d } , B jk := ∂ j A k − ∂ k A j Objectives 1. find the Dirichlet realization with ρ ( L ) � = ∅ and describe Dom( L ) 2. prove the exponential decay of eigenfunctions of L (due to Im V and B )

  5. Why complex potentials? • superconductivity 1 i ∂ y − x 2 � 2 + i y , − ∂ 2 x + � L 2 ( R 2 ) in • optics with gains and losses 2 − ∆ + (1 + i xy ) e − x 2 e − y 2 , L 2 ( R 2 ) in • hydrodynamics 3 − d 2 i d x 2 + x 2 + L 2 ( R ) εf ( x ) , in • open systems 4 , quantum resonances 5 , damped wave equation 6 ,. . . 1 Y. Almog, B. Helffer, and X.-B. Pan. Trans. Amer. Math. Soc. (2013), pp. 1183–1217. 2 A. Regensburger et al. Phys. Rev. Lett. 107 (2011), p. 233902; J. Yang. Opt. Lett. 39 (2014), pp. 1133–1136. 3 I. Gallagher, T. Gallay, and F. Nier. Int. Math. Res. Not. IMRN (2009), pp. 2147–2199. 4 P. Exner. Open quantum systems and Feynman integrals. D. Reidel Publishing Co., 1985. 5 A. A. Abramov, A. Aslanyan, and E. B. Davies. J. Phys. A: Math. Gen. 34 (2001), p. 57. 6 J. Sj¨ ostrand. Publ. Res. Inst. Math. Sci. 36 (2000), pp. 573–611.

  6. Towards the Dirichlet realization: form methods Simple 1D examples in L 2 ( R ) − d 2 − d 2 − d 2 d x 2 − e x 2 + i e x 4 d x 2 − x 2 + i x 3 , d x 2 + i x 3 ,

  7. Towards the Dirichlet realization: form methods Simple 1D examples in L 2 ( R ) − d 2 − d 2 − d 2 d x 2 − e x 2 + i e x 4 d x 2 − x 2 + i x 3 , d x 2 + i x 3 , Lax-Milgram theorem Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V

  8. Towards the Dirichlet realization: form methods Simple 1D examples in L 2 ( R ) − d 2 − d 2 − d 2 d x 2 − e x 2 + i e x 4 d x 2 − x 2 + i x 3 , d x 2 + i x 3 , Lax-Milgram theorem Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V Then the (densely defined) operator L Dom( L ) = { f ∈ V : ∃ g ∈ H , ∀ v ∈ V , ℓ ( f, v ) = � g, v �} , L f = g is bijective from Dom( L ) onto H (= ⇒ ρ ( L ) � = ∅ ).

  9. Towards the Dirichlet realization Assumptions Lax-Milgram theorem 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V Why it doesn’t work?

  10. Towards the Dirichlet realization Assumptions Lax-Milgram theorem 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V Why it doesn’t work? • natural candidate for the form of − ∂ 2 x + i x 3 : � ℓ ( f, f ) = �− f ′′ + i x 3 f, f � = � f ′ � 2 + i x 3 | f ( x ) | 2 d x, R

  11. Towards the Dirichlet realization Assumptions Lax-Milgram theorem 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V Why it doesn’t work? • natural candidate for the form of − ∂ 2 x + i x 3 : � ℓ ( f, f ) = �− f ′′ + i x 3 f, f � = � f ′ � 2 + i x 3 | f ( x ) | 2 d x, R • variational space (form domain) 3 3 V = Dom( ℓ ) = H 1 ( R ) ∩ Dom( | x | � · � 2 V = � · � 2 2 · � 2 2 ) , H 1 + �| x |

  12. Towards the Dirichlet realization Assumptions Lax-Milgram theorem 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. ℓ be V -elliptic ( V -coercive or coercive ) ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | ≥ δ � f � V Why it doesn’t work? • natural candidate for the form of − ∂ 2 x + i x 3 : � ℓ ( f, f ) = �− f ′′ + i x 3 f, f � = � f ′ � 2 + i x 3 | f ( x ) | 2 d x, R • variational space (form domain) 3 3 V = Dom( ℓ ) = H 1 ( R ) ∩ Dom( | x | � · � 2 V = � · � 2 2 · � 2 2 ) , H 1 + �| x | !!! no coercivity

  13. Towards the Dirichlet realization: new Lax-Milgram Generalized Lax-Milgram theorem of Almog-Helffer 7 Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 7 Y. Almog and B. Helffer. Commun. Part. Diff. Eq. 40 (2015), pp. 1441–1466. 8 A. S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zw¨ olf. J. Comput. Appl. Math. 234 (2010), pp. 1912–1919; A. F. M. ter Elst, M. Sauter, and H. Vogt. J. Funct. Anal. 269 (2015), pp. 705–744; L. Grubiˇ si´ c et al. Mathematika 59 (2013), pp. 169–189.

  14. Towards the Dirichlet realization: new Lax-Milgram Generalized Lax-Milgram theorem of Almog-Helffer 7 Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. A-H coercivity: ∃ Φ 1 , Φ 2 bounded linear maps on V and H and | ℓ ( f, f ) | + | ℓ (Φ 1 f, f ) | ≥ δ � f � 2 V , ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | + | ℓ ( f, Φ 2 f ) | ≥ δ � f � 2 V . 7 Y. Almog and B. Helffer. Commun. Part. Diff. Eq. 40 (2015), pp. 1441–1466. 8 A. S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zw¨ olf. J. Comput. Appl. Math. 234 (2010), pp. 1912–1919; A. F. M. ter Elst, M. Sauter, and H. Vogt. J. Funct. Anal. 269 (2015), pp. 705–744; L. Grubiˇ si´ c et al. Mathematika 59 (2013), pp. 169–189.

  15. Towards the Dirichlet realization: new Lax-Milgram Generalized Lax-Milgram theorem of Almog-Helffer 7 Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. A-H coercivity: ∃ Φ 1 , Φ 2 bounded linear maps on V and H and | ℓ ( f, f ) | + | ℓ (Φ 1 f, f ) | ≥ δ � f � 2 V , ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | + | ℓ ( f, Φ 2 f ) | ≥ δ � f � 2 V . Then the (densely defined) operator L Dom( L ) = { f ∈ V : ∃ g ∈ H , ∀ v ∈ V , ℓ ( f, v ) = � g, v �} , L f = g is bijective from Dom( L ) onto H (= ⇒ ρ ( L ) � = ∅ ). 7 Y. Almog and B. Helffer. Commun. Part. Diff. Eq. 40 (2015), pp. 1441–1466. 8 A. S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zw¨ olf. J. Comput. Appl. Math. 234 (2010), pp. 1912–1919; A. F. M. ter Elst, M. Sauter, and H. Vogt. J. Funct. Anal. 269 (2015), pp. 705–744; L. Grubiˇ si´ c et al. Mathematika 59 (2013), pp. 169–189.

  16. Towards the Dirichlet realization: new Lax-Milgram Generalized Lax-Milgram theorem of Almog-Helffer 7 Let 1. ( V , �· , ·� V ) be a Hilbert space continuously embedded and dense in H 2. ℓ : V × V → C be a continuous sesquilinear form 3. A-H coercivity: ∃ Φ 1 , Φ 2 bounded linear maps on V and H and | ℓ ( f, f ) | + | ℓ (Φ 1 f, f ) | ≥ δ � f � 2 V , ∃ δ > 0 , ∀ f ∈ V , | ℓ ( f, f ) | + | ℓ ( f, Φ 2 f ) | ≥ δ � f � 2 V . Then the (densely defined) operator L Dom( L ) = { f ∈ V : ∃ g ∈ H , ∀ v ∈ V , ℓ ( f, v ) = � g, v �} , L f = g is bijective from Dom( L ) onto H (= ⇒ ρ ( L ) � = ∅ ). • similar recent results 8 7 Y. Almog and B. Helffer. Commun. Part. Diff. Eq. 40 (2015), pp. 1441–1466. 8 A. S. Bonnet-Ben Dhia, P. Ciarlet Jr., and C. M. Zw¨ olf. J. Comput. Appl. Math. 234 (2010), pp. 1912–1919; A. F. M. ter Elst, M. Sauter, and H. Vogt. J. Funct. Anal. 269 (2015), pp. 705–744; L. Grubiˇ si´ c et al. Mathematika 59 (2013), pp. 169–189.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend