non self adjoint graphs
play

Non-self-adjoint graphs Petr Siegl Mathematical Institute, - PowerPoint PPT Presentation

Non-self-adjoint graphs Petr Siegl Mathematical Institute, University of Bern, Switzerland http://gemma.ujf.cas.cz/siegl/ Based on [1] A. Hussein, D. Krej ci r k and P. Siegl: Non-self-adjoint graphs , Transactions of the AMS 367,


  1. Non-self-adjoint graphs Petr Siegl Mathematical Institute, University of Bern, Switzerland http://gemma.ujf.cas.cz/˜siegl/ Based on [1] A. Hussein, D. Krejˇ ciˇ r´ ık and P. Siegl: Non-self-adjoint graphs , Transactions of the AMS 367, (2015) 2921-2957

  2. Outline 1. Introduction and “the example” 2. Classes of boundary conditions 3. Spectral properties 4. Similarity transforms

  3. Outline 1. Introduction and “the example” 2. Classes of boundary conditions 3. Spectral properties 4. Similarity transforms − ∆ ≡ − d 2 L 2 ( G ) + boundary/vertex conditions in d x 2 G L 2 ( G ) = ⊕ N j =1 L 2 ((0 , a j )) , a j ∈ (0 , + ∞ ] , N = #edges < ∞

  4. Introduction Non-self-adjoint graphs • “fundamental non-self-adjointness”: • non-symmetric boundary/vertex conditions, e.g. complex δ -interactions • no problems with too little or too many conditions 1 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio, U. Gunther, and S. Kuzhel. J. Phys. A: Math. Theor. 42 (2009), 105205 (22pp); S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; A. V. Kiselev. Op. Theory: Adv. and Appl. 186 (2008), pp. 267–283; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289. 2 A. Hussein. J. Evol. Equ. 14 (2014), pp. 477–497; V. Kostrykin, J. Potthoff, and R. Schrader. J. Math. Phys. 53 (2012), p. 095206; V. Kostrykin, J. Potthoff, and R. Schrader. Proc. Symp. in Pure Math. 77 (2008), pp. 423–458; V. Kostrykin, J. Potthoff, and R. Schrader. Adventures in math. phys. Vol. 447. Contemp. Math. AMS, Providence, 2007, pp. 175–198. 3 P. Freitas and J. Lipovsk´ y. arXiv:1307.6377.

  5. Introduction Non-self-adjoint graphs • “fundamental non-self-adjointness”: • non-symmetric boundary/vertex conditions, e.g. complex δ -interactions • no problems with too little or too many conditions • motivation for complex potentials/interactions: • electromagnetism, optics with losses and gains • superconductivity, damped wave equation • stochastic processes • open quantum systems, effective models • existing literature • non-self-adjoint point interactions 1 • m-accretive and m-dissipative graphs 2 • damped wave equation on graphs 3 1 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio, U. Gunther, and S. Kuzhel. J. Phys. A: Math. Theor. 42 (2009), 105205 (22pp); S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; A. V. Kiselev. Op. Theory: Adv. and Appl. 186 (2008), pp. 267–283; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289. 2 A. Hussein. J. Evol. Equ. 14 (2014), pp. 477–497; V. Kostrykin, J. Potthoff, and R. Schrader. J. Math. Phys. 53 (2012), p. 095206; V. Kostrykin, J. Potthoff, and R. Schrader. Proc. Symp. in Pure Math. 77 (2008), pp. 423–458; V. Kostrykin, J. Potthoff, and R. Schrader. Adventures in math. phys. Vol. 447. Contemp. Math. AMS, Providence, 2007, pp. 175–198. 3 P. Freitas and J. Lipovsk´ y. arXiv:1307.6377.

  6. Basic concepts Minimal and maximal operators • minimal operator Dom( − ∆ min ) = W 2 , 2 j =1 W 2 , 2 ( G ) := ⊕ N ((0 , a j )) 0 0 ( − ∆ min ψ ) j := − ψ ′′ j

  7. Basic concepts Minimal and maximal operators • minimal operator Dom( − ∆ min ) = W 2 , 2 j =1 W 2 , 2 ( G ) := ⊕ N ((0 , a j )) 0 0 ( − ∆ min ψ ) j := − ψ ′′ j • maximal operator Dom( − ∆ max ) = W 2 , 2 ( G ) := ⊕ N j =1 W 2 , 2 ((0 , a j )) ( − ∆ max ψ ) j := − ψ ′′ j • − ∆ min is symmetric, closed with def. indices ( d, d ) d = (#unbounded edges) + 2(#bounded edges)

  8. Basic concepts Minimal and maximal operators • minimal operator Dom( − ∆ min ) = W 2 , 2 j =1 W 2 , 2 ( G ) := ⊕ N ((0 , a j )) 0 0 ( − ∆ min ψ ) j := − ψ ′′ j • maximal operator Dom( − ∆ max ) = W 2 , 2 ( G ) := ⊕ N j =1 W 2 , 2 ((0 , a j )) ( − ∆ max ψ ) j := − ψ ′′ j • − ∆ min is symmetric, closed with def. indices ( d, d ) d = (#unbounded edges) + 2(#bounded edges) Our Laplacians ∆ M � = ∆ ∗ − ∆ min ⊂ − ∆ M ⊂ − ∆ max , M Dom( − ∆ M ) := { ψ ∈ Dom( − ∆ max ) : [ ψ ] ⊕ [ ψ ′ ] ∈ M ⊂ C 2 d } we assume : dim M = d

  9. “The example” ψ 1 τ ψ 2 τ -interaction 4 ψ 1 (0) = e i τ ψ 2 (0) , ψ ′ 1 (0) = − e − i τ ψ ′ 2 (0) , τ ∈ [0 , π/ 2] 4 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289; P. Siegl. J. Phys. A: Math. Theor. 41 (2008), 244025 (11pp).

  10. “The example” ψ 1 τ ψ 2 τ -interaction 4 ψ 1 (0) = e i τ ψ 2 (0) , ψ ′ 1 (0) = − e − i τ ψ ′ 2 (0) , τ ∈ [0 , π/ 2] • τ = 0: • − ∆ M = − ∆ ∗ M = − ∆ R with σ ( − ∆ M ) = [0 , + ∞ ) • Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) 4 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289; P. Siegl. J. Phys. A: Math. Theor. 41 (2008), 244025 (11pp).

  11. “The example” ψ 1 τ ψ 2 τ -interaction 4 ψ 1 (0) = e i τ ψ 2 (0) , ψ ′ 1 (0) = − e − i τ ψ ′ 2 (0) , τ ∈ [0 , π/ 2] • τ = 0: • − ∆ M = − ∆ ∗ M = − ∆ R with σ ( − ∆ M ) = [0 , + ∞ ) • Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) • τ ∈ (0 , π/ 2): • − ∆ M � = − ∆ ∗ M with σ ( − ∆ M ) = [0 , + ∞ ) Φ , Φ − 1 ∈ B ( L 2 ( G )) Φ − 1 ( − ∆ M )Φ = − ∆ R • in fact: − ∆ M ∼ − ∆ R : • Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) + (1 − e 2i τ ) ψ 2 (0) ψ ′ 2 (0) • cannot be defined through sectorial forms: Num( − ∆ M ) = C 4 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289; P. Siegl. J. Phys. A: Math. Theor. 41 (2008), 244025 (11pp).

  12. “The example” ψ 1 τ ψ 2 τ -interaction 4 ψ 1 (0) = e i τ ψ 2 (0) , ψ ′ 1 (0) = − e − i τ ψ ′ 2 (0) , τ ∈ [0 , π/ 2] • τ = 0: • − ∆ M = − ∆ ∗ M = − ∆ R with σ ( − ∆ M ) = [0 , + ∞ ) • Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) • τ ∈ (0 , π/ 2): • − ∆ M � = − ∆ ∗ M with σ ( − ∆ M ) = [0 , + ∞ ) Φ , Φ − 1 ∈ B ( L 2 ( G )) Φ − 1 ( − ∆ M )Φ = − ∆ R • in fact: − ∆ M ∼ − ∆ R : • Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) + (1 − e 2i τ ) ψ 2 (0) ψ ′ 2 (0) • cannot be defined through sectorial forms: Num( − ∆ M ) = C • τ = π/ 2: • − ∆ M � = − ∆ ∗ M with σ ( − ∆ M ) = [0 , + ∞ ) ∪ C \ [0 , + ∞ ) = C • no sectorial forms: Num( − ∆ M ) = C 4 S. Albeverio, S. M. Fei, and P. Kurasov. Lett. Math. Phys. 59 (2002), pp. 227–242; S. Albeverio and S. Kuzhel. J. Phys. A: Math. Gen. 38 (2005), pp. 4975–4988; S. Kuzhel and C. Trunk. J. Math. Anal. Appl. 379 (2011), pp. 272–289; P. Siegl. J. Phys. A: Math. Theor. 41 (2008), 244025 (11pp).

  13. ✶ ✶ Classes of boundary conditions Boundary conditions • subspaces M parametrized by matrices A, B ∈ C d × d , M = M ( A, B ) Dom( − ∆( A, B )) = � ψ ∈ Dom( − ∆ max ) : A [ ψ ] + B [ ψ ′ ] = 0 � 5 V. Kostrykin and R. Schrader. J. Phys. A: Math. Gen. 32 (1999), pp. 595–630. 6 P. Kuchment. Waves Random Media 14 (2004), pp. 107–128.

  14. ✶ ✶ Classes of boundary conditions Boundary conditions • subspaces M parametrized by matrices A, B ∈ C d × d , M = M ( A, B ) Dom( − ∆( A, B )) = � ψ ∈ Dom( − ∆ max ) : A [ ψ ] + B [ ψ ′ ] = 0 � Self-adjoint case: − ∆( A, B ) = − ∆( A, B ) ∗ ⇒ (A,B) parametrization 5 : AB ∗ = BA ∗ ⇐ 5 V. Kostrykin and R. Schrader. J. Phys. A: Math. Gen. 32 (1999), pp. 595–630. 6 P. Kuchment. Waves Random Media 14 (2004), pp. 107–128.

  15. Classes of boundary conditions Boundary conditions • subspaces M parametrized by matrices A, B ∈ C d × d , M = M ( A, B ) Dom( − ∆( A, B )) = � ψ ∈ Dom( − ∆ max ) : A [ ψ ] + B [ ψ ′ ] = 0 � Self-adjoint case: − ∆( A, B ) = − ∆( A, B ) ∗ ⇒ (A,B) parametrization 5 : AB ∗ = BA ∗ ⇐ ⇐ ⇒ Cayley transform: S ≡ U unitary S := − ( A + i kB ) − 1 ( A − i kB ) , k > 0 − 1 1 2i k ( U + ✶ ) [ ψ ′ ] = 0 2 ( U − ✶ ) [ ψ ] + 5 V. Kostrykin and R. Schrader. J. Phys. A: Math. Gen. 32 (1999), pp. 595–630. 6 P. Kuchment. Waves Random Media 14 (2004), pp. 107–128.

  16. Classes of boundary conditions Boundary conditions • subspaces M parametrized by matrices A, B ∈ C d × d , M = M ( A, B ) Dom( − ∆( A, B )) = � ψ ∈ Dom( − ∆ max ) : A [ ψ ] + B [ ψ ′ ] = 0 � Self-adjoint case: − ∆( A, B ) = − ∆( A, B ) ∗ ⇒ (A,B) parametrization 5 : AB ∗ = BA ∗ ⇐ ⇐ ⇒ Cayley transform: S ≡ U unitary S := − ( A + i kB ) − 1 ( A − i kB ) , k > 0 − 1 1 2i k ( U + ✶ ) [ ψ ′ ] = 0 2 ( U − ✶ ) [ ψ ] + ⇒ m-sectorial parametrization 6 : ( A, B ) ≃ ( L + P, P ⊥ ) ⇐ Q M [ ψ ] = � ψ ′ � 2 L 2 ( G ) − � LP ⊥ [ ψ ] , P ⊥ [ ψ ] � C d 5 V. Kostrykin and R. Schrader. J. Phys. A: Math. Gen. 32 (1999), pp. 595–630. 6 P. Kuchment. Waves Random Media 14 (2004), pp. 107–128.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend