noise in high speed digital to analog converters
play

Noise in High-Speed Digital to Analog Converters P .-Y. Bourgeois - PowerPoint PPT Presentation

2015 IFCS / EFTF Joint Meeting Denver, CO, USA, April 12-16, 2015 Noise in High-Speed Digital to Analog Converters P .-Y. Bourgeois , T. Imaike , G. Goavec-Merou , E. Rubiola CNRS FEMTO-ST Institute, Besancon, France


  1. 2015 IFCS / EFTF Joint Meeting Denver, CO, USA, April 12-16, 2015 Noise in High-Speed Digital to Analog Converters P .-Y. Bourgeois ∇ , T. Imaike ∇ ∃ , G. Goavec-Merou ∇ , E. Rubiola ∇ ∇ CNRS FEMTO-ST Institute, Besancon, France ∃ Nihon University, Japan • Hardware • Digital filtering • Transition noise • Phase noise • Cross spectrum home page http://rubiola.org

  2. 2 Hardware AD9467 / Single LTC2145 / Dual LTC2158 / Dual ADC type Alazartech Red Pitaya Eval board board) board Platform Computer Zynq (onboard) Zynq (separated) Sampling ƒ 250 MHz 125 MHz 310 MHz Input BW 900 MHz 750 MHz 1250 MHz Bits / ENoB 16 / 12 14 / 12 14 / 12 Exp.noise (2V fsr ) –158 dBV 2 /Hz –155 dBV 2 /Hz –159 dBV 2 /Hz 0? / 100 fs di ff Delay / Jitter 1.2 ns / 60 fs 1 ns / 150 fs 0? / 80 fs single 1.8 V & 3.3 V 1.8 V 1.8 V Power supply 1.33 W 190 mW 725 mW Dissipation is relevant to thermal stability For reference, 100 fs jitter is equivalent to carrier ƒ 𝛘 rms S 𝛘 (ƒ) = b 0 10 log 10 [L(f)] 10 MHz 6.3 µrad 4x10 –18 rad 2 /Hz –177 dBc/Hz 100 MHz 63 µrad 4x10 –17 rad 2 /Hz –167 dBc/Hz

  3. 3 Digital Filter and Decimation Noise, Sampling, and Solution: V 2 σ 2 = FSR the Parseval theorem Fast sampling, and filter 12 × 2 2 m S (ƒ) S (ƒ) σ 2 = NB σ 2 = B σ 2 slow sampling digital filer n B n N 0 after sampling fast sampling fast sampling N 00 ƒ ƒ B n = 1 B 2 f N B 0 B 00 signal BW sampling BW h(t) • Convolution with low-pass h(t) 2 B 2 π B sin(2 π BT ) • 127 coe ff . Blackman-Harris kernel 2 π BT t provides 70 dB stop-band attenuation • Future: we will use 
 H(ƒ) 1 / 2 B >>127 coe ffi cients 1 D ƒ − B B

  4. 4 Sampling Frequency S V (ƒ), dBV 2 /Hz AD9467 (Alazartech) 50 MHz 100 MHz 250 MHz The observed floor fits the theory We always use the highest sampling frequency

  5. LTC2158-14: Shorted Input 5 Transition Noise Histogram 25000 20000 High-Speed Converters 15000 COUNT P(N) N 10000 +3 5000 +2 +1 V 0 0 8192 8196 8200 8204 8208 8212 8216 –1 –2 N –3 –8 –6 –4 –2 0 +2 +4 +6 +8 –8 –6 –4 –2 0 2 4 6 8 • Analog noise is higher than quantization noise • Given a voltage V –> random distribution of output N • This correct –> V 2 = V 2analog + V 2quant 
 (don’t spoil the resolution with insu ffi cient no of bits) Information (bits) Equivalent No of Bits  � V FSR X I = − p i log 2 ( p i ) ENoB = log 2 1 + √ 12 f N σ V i

  6. 6 Transition Noise Measurement channel a RF ADC input input τ a ADC + 10 MHz noise Σ V pp ≈ 0.95 V FSR ENoB FFT – channel b F F T W AVG RF ADC input clock distribution gain S v (ƒ) τ c τ b The di ff erential clock jitter introduces additional noise due to the asymmetry between AM and PM At 10 MHz input, ≈ 100 fs the e ff ect of jitter does not show up

  7. 7 LT 2158 Noise -40 S V (ƒ), dBV 2 /Hz "temp_g2p16_OK/dif_ab.dat" "temp_2stages/dif_ab.dat" -60 LT 2158 "temp_3stages/dif_ab.dat" -80 –104 dBV -100 2 /Hz @ 1 Hz -120 -140 –158 dBV 2 /Hz -160 ≈ 1 dB added -180 -200 -220 -240 0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 10 MHz, V pp ≈ 0.95 V FSR

  8. 8 LT2145 (Red Pitaya) Noise -40 S V (ƒ), dBV2/Hz "temp_redp_0_di ff /dif_ab.dat" "temp_redp_1_di ff /dif_ab.dat" -60 LT 2145 "temp_redp_2_di ff /dif_ab.dat" -80 –110 dBV 2 /Hz @ 1 Hz -100 -120 -140 –153 dBV 2 /Hz ≈ 2 dB added -160 -180 -200 -220 -240 0.01 0.1 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 10 MHz, V pp ≈ 0.95 V FSR

  9. 9 AD9467 (Alazartech) Noise -90 "dif_cha_chb_avg100.dat" "dif_chc_chd_avg100.dat" -100 f(x) –110 dBV 2 /Hz @ 1 Hz -110 -120 -130 -140 -150 -160 –157 dBV 2 /Hz ≈ 1 dB added -170 -180 -190 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 10 MHz, V pp ≈ 0.95 V FSR

  10. 10 Digital Down Conversion input I-Q detector output data stream data stream I I-Q –> R- φ D R R cos(2 πν 0 t + θ ) Q θ D R= √ (I 2 +Q 2 ) sin(2 πν 0 t ) cos(2 πν 0 t ) φ =atan2(Q/I) sin cos DDS m n k = ( n k − 1 + N ) mod D register D = 2 m Σ ν 0 = N N D ν s DDC

  11. Vol 21 p.27 11 Phase Noise each sample T ϕ = n noise n i cos θ V 0 V 0 θ (rad) weight t (seconds) avg over τ sampling h ϕ i i τ T s τ = mT s ( m samples) bandwidth B = 1 / 2 τ ⇢⌧ n S ϕ ( f ) = σ 2 � � ϕ V { h ϕ i τ } = V cos θ B V 0 τ σ 2 2 m = E { n 2 } = n 2 mV 2 2 mV 2 ν s 0 0 σ 2 σ 2 = n n = ν s V 2 2 mV 2 0 0 Independent of v 0 =1/T s and of tau The sampling jitter adds up

  12. 12 Application to 10 GHz Cryogenic Oscillators Uliss ADC card 횽 A–C φ ADC DDC + 횽 A – 횽 B R Σ FFT 10 τ a GHz φ – 7.03 MHz ADC DDC 횽 B–C AVG beat R τ b Marmotte S φ (ƒ) τ c clock • Rejects the common-path jitter • Takes in the di ff erential jitter

  13. 13 Results L(ƒ), dBc/Hz Background (2 channel) TSC5125 Background (4 channel) • Background noise 5–6 dB higher than that of the TSC5125 • We use 2 channel cross spectrum • TSC5125 uses 4 channel cross spectrum

  14. 14 The Four-Channel Scheme A ADC card 1 φ A–C ( φ A–B ) 1 ADC DDC + ( 횽 A – 횽 B ) 1 R Σ FFT τ a φ B–C – ADC DDC R τ b cross spectrum S φ (ƒ) τ c AVG clock ADC card 2 φ A–C ( φ A–B ) 2 ADC DDC + R Σ FFT τ a B ( 횽 A – 횽 B ) 2 φ B–C – ADC DDC R τ b τ c

  15. 15 Background Noise -40 L(ƒ), dBc/Hz -185 "dif_cross_avg1000.txt" Four-channel scheme -60 "dif_cross_avg1000.dat" "dif_ab_avg1000.dat_2chlimitpybAB" ff -80 i "dif_cha_chb_avg1000.dat" d l e n -100 n a h c -120 1E3 AVG -140 1E6 AVG -160 –185 dBc baseline -180 -200 -220 1 10 100 1000 10000 100000 1e+06

  16. 16 Compared to a Commercial Instrument – this is done only to make sure that there is no calibration mistake – -20 L(ƒ), dBc/Hz "sma-agilent-meas.dat" "sma-alazar.dat" u 1:($2-10*log10(2)) -40 Four-channel scheme "sma-datasheet.dat" -60 Measure a Rohde Schwarz synthesizer -80 Agilent Our (Alazartech) -100 -120 -140 -160 -180 -200 1 10 100 1000 10000 100000 1e+06 1e+07

  17. 17 Conclusions • White noise • Depends on Fs and ENoB • Fits well the expectation • Flicker –110 dBV 2 /Hz best found • First phase noise measurements, (direct & beat) • Background –185 dBc with 4-channel scheme • Modelling common-mode and di ff erential jitter in progress • Unwanted correlated e ff ects still unknown

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend