no optics no photonics
play

No optics, no photonics Peter Palffy-Muhoray Liquid Crystal - PowerPoint PPT Presentation

No optics, no photonics Peter Palffy-Muhoray Liquid Crystal Institute Kent State University 2/28/2018 1 Light-matter interactions light can produce mechanical stress, and do work light driven machines: 2/28/2018 2 Light-matter


  1. No optics, no photonics Peter Palffy-Muhoray Liquid Crystal Institute Kent State University 2/28/2018 1

  2. Light-matter interactions • light can produce mechanical stress, and do work • light driven machines: 2/28/2018 2

  3. Light-matter interactions • light driven machines: • light – changes degree of order – change in order parameter produces stress – system does work • equation of state relates pressure and order parameter • illuminates the connection of stress and order parameter 2/28/2018 3

  4. Towards an equation of state for dense nematics with steric interactions Peter Palffy-Muhoray Liquid Crystal Institute Kent State University collaborators: Eduardo Nascimento Physics, Univ. Sao Paulo Jamie Taylor Mathematics, Oxford, Kent State Epifanio Virga Dept. Mathematics, Univ. Pavia Xiaoyu Zheng Dept. of Math. Sciences, Kent State 2/28/2018 4

  5. Outline • motivation • system under consideration • free energy • the probability distribution function & order parameters • summary • outstanding questions 2/28/2018 5

  6. motivation 2/28/2018 6

  7. Motivation • interparticle interactions typically consist of – long-range attraction – short range repulsion • in the case of liquid crystals, – much is known about long range attraction  – much less is known about short range repulsion ? ? • we are interested in the behavior of nematics at high densities where short range steric effects dominate. 2/28/2018 7

  8. Current landscape • Onsager theory: – ‘The effects of shape…’, ANYAS 1949 – seminal work providing model of interacting hard rods – predicts • nematic order above critical density • phase separation • simulations (Frenkel,..) and experiments (Lekkerkerker,.) show – nematic order – phase separation 2/28/2018 8

  9. MC study of hard ellipsoids Gerardo Odriozola, J. Chem. Phys. 136 , 134505, (2012) 2/28/2018 9

  10. Onsager Theory 2 V 1 N • free energy     F kT N [ ln( ) V ..] exc N 2 V • where w ( r )  12     3 kT V ( e 1) d r exc 12 is the pair excluded volume. 4    3 for hard spheres: V 8 r 8 v exc 0 0 3 Question: what is the region of validity? 2/28/2018 10

  11. Onsager Theory: region of validity • key step in derivation: 2 2 N N – (ANYAS Eq. 19 – 21)    ln(1 V ..) V exc exc 2 V 2 V 2 N V  18 • but 10 !?! exc 2 V • Onsager makes no comment on this – refers to work of Mayer Nv – suggests region of validity  0 0.2 V • . 2/28/2018 11

  12. Onsager Theory: region of validity • expansion of the free energy in powers of the density converges* • the region of convergence is still not firmly established • it seems likely that Onsager’s original estimate is reasonable** • Onsager theory is valid for dilute systems. We look elsewhere. * Lebowitz and Penrose, J. Math. Phys. 7, 841 (1964) ** P. P- M., E.G. Virga, X. Zheng, “Onsager’s missing steps retraced”, J. Phys. Condens. Matter 29 475102 (2017) 2/28/2018 12

  13. Motivation • current descriptions are low density approximations • want to describe, even if very approximately, what happens to orientationally ordered hard particle systems at high densities • can we approximate what happens when we run out of available space/available states? 2/28/2018 13

  14. Guidance: Equations of state P - pressure V - volume • describe bulk behavior N - no. of particles k - Boltzmann's constant  T - temperature – ideal gas: PV NkT – Problem: for a given , can be arbitrarily large! V N  11 - stress G - shear modulus 1     – neo-Hookean elasticity: 2  G ( ) - stretch  11 – Problem: stretch can be arbitrarily large! 2/28/2018 14

  15. Guidance: Equations of state P - pressure • describe bulk behavior V - volume N - no. of particles k - Boltzmann's constant  – ideal gas: PV NkT T - temperature – Problem: for a given , can be arbitrarily large! V N – Non-ideal: Van der Waals NkT    2 (P a)   (V ) Nv - stress o 11 G - shear modulus  - stretch 1     – neo-hookean elasticity: 2 G ( )        11 2 2 2 I 1 1 2 3 – Problem: stretch can be arbitrarily large!  1 I 3 – Non-ideal: Gent     2 m G ( )( )   11 I I 1 m 2/28/2018 15

  16. Origins of the ‘hard’ response   1 1 v      • VdW free energy 2 o F a kT ln( )  2 v o  1 I 3     1 W G (I 3)ln(1 ) • Gent energy density  m 2 I 3 m kT   • Helmholtz free energy density F ln Z V   Z  – free energy as available phase space . F 0 - must keep logarithm for ‘hard’ response! 2/28/2018 16

  17. system under consideration 2/28/2018 17

  18. System under consideration • assembly of identical hard ellipsoids • length width . 2 a L L W  • cannot interpenetrate 12 W 2 b    • pair excluded volume ( ) (cos ) V C DP exc 12 2 12 • volume one particle makes unavailable to the center of the other   • L W / and are known functions of the aspect ratio D C 4 ( L W 4 ( L W       C v 4 ) D v 2 ) o o 3 W L 3 W L 2/28/2018 18

  19. Excluded volume • ellipsoids 2 a L      V ( ) C DP (cos ) 12 exc 12 2 12 W 2 b 1      2 V ( ) C D (3cos 1) exc 12 12 2    • isotropic average: V ( ) C exc 12   • parallel configuration: V (0) C D exc 2/28/2018 19

  20. the free energy 2/28/2018 20

  21. Single component system   • Helmholtz free energy F kT ln Z   d d q p  H ( , ) q p Z e ... kT • partition function:    U ( ) q • configurational partition function: Z e d q .... kT (integrate out momenta)   ( ) 1 Uij q q i j    • pairwise interactions: F kT ln e dq ... dq ... kT N m N ! 2/28/2018 21

  22. Interaction potential • ignore attractive interactions, keep only hard core R ( ) U r 12 12 0 r 12 R  1 U ( q q ) i j i j ,    i j ,   ln ... ... F kT e d q d q kT 1 N N ! 2/28/2018 22

  23. Interaction potential • ignore attractive interactions, keep only hard core R ( ) U r 12 12 0 r 12 R  1 U ( q q ) i j i j ,    i j ,   ln ... ... F kT e d q d q kT 1 N N ! 1   ln F kT G N N ! 2/28/2018 23

  24. Free energy • no. of states of N distinguishable particles   R  U ( q q ) i j i j ,  i j , G e d q 1 ... d q kT N N  N • adding one particle    R R    U ( q q ) U ( q q )  i j i N 1 i j , i  i j ,  i ,N 1 ( ) ... G e e d q d q d q kT kT   N 1 N 1 1 N   N R   U ( q q )  i i N 1    i ,N 1  G G P ( q ... q ) ( e d q ) d q ... d q kT   N 1 N 1 N N 1 1 N   N R   U ( q q )  i N 1 i   i ,N 1    G G e d q kT   N 1 N N 1  2/28/2018 24

  25. Mean field free energy • no. of states of N distinguishable particles R  U ( q q ) 1 i i   1, i   N G e d q kT N 1  R  U ( q q ) i 1 i   1, i     • or N G (1 (1 e )) d q kT N 1     ) N G ( [1 W ( q )] d q • and N 1 1  R  U ( q q ) 1 i i  1, i    • where W ( ) 1 e q kT 1 is the average excluded volume fraction. 2/28/2018 25

  26. Mean Field Free Energy • The mean field free energy is 1     N F kT ln [ (1 W ( q )) d q ] 1 1 N !   3 where d d d q r 1 1 1 N  and where is the average volume v ( ) W q v eff 1 eff V effectively occupied by one particle. 2/28/2018 26

  27. Effectively occupied volume* • for spheres in dilute limit 1   v 4 v V eff 0 exc 2 • for close packed spheres 3 2 3 2 1    v v V V   eff 0 exc exc 8 6 • for any number density    v ( ) V eff exc 1 1    2 6 2/28/2018 27

  28. Excluded volume fraction    v ( ) V eff exc 1   U ( q q , )      1 2 W ( q ) ( ) ( q )(1 e kT ) d q 1 2 2  and at high densities, 1   U ( q q , )     1 2 W ( q ) ( q )(1 e kT ) d q 1 0 2 2   where is to be determined. 0 2/28/2018 28

  29. Example: Isotropic system of spherical particles: 1     N ln [ (1 ( )) ] F kT W q dq 1 1 ! N • now   4 W v o V    F NkT ln( 4 v ) o N • gives  Van der Waals kT  P   equation of state (1 4 ) v o    – nb. at low densities, P kT (1 4 v ) o 2/28/2018 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend