wave optics in the kerr bh
play

Wave optics in the Kerr BH Sousuke Noda (Nagoya Univ.) Wave optics - PowerPoint PPT Presentation

Wave optics in the Kerr BH Sousuke Noda (Nagoya Univ.) Wave optics in black hole spacetimes: Schwarzschild case Y. Nambu and S.N Wave optics in black hole spacetimes: Kerr case (in prep.) S.N and Y. Nambu HTGRG3 2017 1 August @ Quy Nhon,


  1. Wave optics in the Kerr BH Sousuke Noda (Nagoya Univ.) Wave optics in black hole spacetimes: Schwarzschild case Y. Nambu and S.N Wave optics in black hole spacetimes: Kerr case (in prep.) S.N and Y. Nambu HTGRG3 2017 1 August @ Quy Nhon, Vietnam

  2. Sousuke Noda (Nagoya Univ. Japan) Collaborators Yasusada Nambu (Nagoya Univ.) Masaaki Takahashi (Aichi Edu. Univ.) Based on Physical Rev. D .95, 104055 (2017) S.N., Y.Nambu, and M.Takahashi On August 4 (Fri) Analog rotating black holes in a MHD inflow

  3. Wave optics in the Kerr BH Sousuke Noda (Nagoya Univ.) Wave optics in black hole spacetimes: Schwarzschild case Y. Nambu and S.N Wave optics in black hole spacetimes: Kerr case (in prep.) S.N and Y. Nambu HTGRG3 2017 1 August @ Quy Nhon, Vietnam

  4. 1. Introduction & Motivation 2. Wave scattering by a Kerr BH 3. Interference patterns & Images

  5. 1. Introduction & Motivation 2. Wave scattering by a Kerr BH 3. Interference patterns & Images

  6. Violation of geometrical optics approximation Why wave optics ? Wave optics Geometrical optics eikonal approx. short wavelength lens lens Supernumerary rainbow Brocken spectra Caustics alexander's dark band w o b n Primary rainbow i a r y r a d n o c e S z Envelope of rays Brightness = ∞ Airy (1836) Mie scattering Primary in the geometrical optics 0.30 alexander's dark band 0.25 0.20 supernumerary rainbow 0.15 These phenomena cannot be understood in geometrical optics. 0.10 0.05 - 5 5 10

  7. Violation of geometrical optics approximation Why wave optics ? Wave optics Geometrical optics eikonal approx. short wavelength lens lens Supernumerary rainbow Brocken spectra Caustics alexander's dark band w o b n Primary rainbow i a r y r a d n o c e S z Envelope of rays Brightness = ∞ Airy (1836) Mie scattering Primary in the geometrical optics 0.30 alexander's dark band 0.25 0.20 supernumerary rainbow 0.15 These phenomena cannot be understood in geometrical optics. 0.10 0.05 - 5 5 10

  8. Scattering in geometrical optics Violation of geometrical approximation 2. Rainbow scattering 1. Orbiting (glory) Why wave optics ? Di ff erential cross section ◆ − 1 ✓ d Θ d σ b Ray Θ ( b ) scattering angle d Ω = sin Θ db b scatterer BH case Unstable Circular orbit Θ ( b ) b c sin Θ = 0 b scatterer − π Θ = − π , − 2 π , ... − 2 π − 3 π Caustics Θ ( b ) b c � d Θ b � scatterer = 0 � db � b = b c same angle

  9. MODEL of a gravitational lensing Lens Deflection angle ∝ 1 /b b : impact parameter Small aperture Source e b g a m I Screen Pinhole camera

  10. screen Spherical symmetric case image lens

  11. Non-spherical case Small aperture Source Einstein cross e g a m I by Hubble Space Telescope cross image Screen pinhole caustics Pinhole camera

  12. Caustics & # of image screen image plane Small aperture Source e g a m I Pinhole camera

  13. Non-spherical case pinhole caustics

  14. unstable circular orbits Kerr BH = Non-spherical lens + unstable circular orbit No unstable circular orbits in this model Lens (deflection angle ∝ 1/b) mode caustics Small aperture Source e g a m I mode caustics ?

  15. unstable circular orbits Kerr BH = Non-spherical lens + unstable circular orbit No unstable circular orbits in this model Lens (deflection angle ∝ 1/b) mode caustics Small aperture Source e g Kerr a m I mode caustics ?

  16. Our goal Wave scattering by a Kerr BH Kerr BH Φ interference pattern Optical caustics? screen image plane unstable circular orbit Imaging (Wave optics) 2D Fourier transform = imaging Unstable Circular Orbit Black Hole Shadow (image) E ff ect of the unstable circular orbit in the scattered wave.

  17. 1. Introduction & Motivation 2. Wave scattering by a Kerr BH 3. Interference patterns & Images

  18. BH obs source Setup ( θ , φ ) ( θ s , φ s ) r Equatorial plane r s Kerr spacetime (Boyer-Lindquist) dt 2 − 4 Mar sin 2 θ ∆ dr 2 + Σ d θ 2 + A sin 2 θ ✓ ◆ 1 − 2 Mr dtd φ + Σ ds 2 = g µ ν dx µ dx ν = − d φ 2 Σ Σ Σ Σ = r 2 + a 2 cos 2 θ A = ( r 2 + a 2 ) 2 − ∆ a 2 sin 2 θ , , ∆ = r 2 − 2 Mr + a 2 short wavelength ( M � λ ) M ω � 1 interference scalar wave , monochromatic S = − e − i ω t ⇤ Φ ( x, x s ) = S √− g δ 3 ( x − x s ) stationary point source Φ ( x, x s ) = G ( x , x s ) e − i ω t 1 1 � √− gg jk ∂ k G − ω 2 g tt G − 2 ω g t φ ∂ φ G + √− g δ 3 ( x − x s ) � = − √− g ∂ j

  19. Partial wave expansion of G ( x , x s ) ` ∞ ψ ` m ( r, r s ) X X ` m ( θ s ) e im � e − im � s G ( x , x s ) = s + a 2 S ` m ( θ ) S ∗ r 2 + a 2 p √ r 2 Spheroidal harmonics ` =0 m = − ` The radial part d 2 ` m + Q ( r ; ` , m ) ` m = − � ( r − r s ) dr 2 source term ∗ Q ( r ; ` , m ) = [ ! ( r 2 + a 2 ) − ma ] 2 − ∆ ( A ` m + a 2 ! 2 − 2 am ! ) for M ω � 1 ( r 2 + a 2 ) 2 To obtain ψ ` m ( r, r s ) , we use a property of the Green function: W :Wronskian ψ ` m ( r, r s ) = − u 1 ( r s ) u 2 ( r ) θ ( r − r s ) − u 1 ( r ) u 2 ( r s ) θ ( r s − r ) , W W where and are independent solutions of the homogeneous eq. u 1 u 2 d 2 u ` m ✓ ◆ ! r ∗ − ⇡` + Q ( r ; ` , m ) u ` m = 0 2 + � ` m u ` m ∼ sin r ∗ → ∞ dr 2 ∗ phase shift

  20. Radial equation and the phase shift A in e − i ω r ∗ 1 d 2 u ` m e + i ω r ∗ + Q ( r ; ` , m ) u ` m = 0 e − i $ r ∗ dr 2 A out ∗ IN mode ( e − i $ r ∗ ( r ∗ → −∞ ) purely ingoing @ horizon u IN = A out e i ! r ∗ + A in e − i ! r ∗ ( r ∗ → + ∞ ) UP mode ( B out e i $ r ∗ + B in e − i $ r ∗ ( r ∗ → −∞ ) purely outgoing @ infinity u UP = e i ! r ∗ ( r ∗ → + ∞ ) , e 2 i � ` m ≡ ( − ) ` +1 A out S matrix ( ) Green function A in with r > r s ψ ` m ( r, r s ) = − u IN ( r s ) u UP ( r ) i r, r s � M = u IN ( r s ) u UP ( r ) 2 ω A in W = e i ! r ∗ = e i ! r ∗ ⇢ i � h i Sum over the partial waves h �` m �` m 2 i ω ( − ) ` n o i ! r s ∗ + r +2 � ` m − i ! r s ∗ − 2 ! (1 /r s − 1 /r ) e i [ ! r s ∗ +2 � ` m ] − ( − ) ` e − i ! r s ∗ 2 i ω ( − ) ` − ( − ) ` e e 2 ! ˜ does not converge. λ ` m = A ` m + a 2 ω 2 Fresnel di ff raction r = (1 /r + 1 /r s ) − 1 ˜

  21. Wave scattering by a Kerr BH Green function ` G ( x , x s ) ≡ e i ! ( r ∗ + r s ∗ ) ∞ �` m X X r e 2 i � ` m Z ` m ( θ , φ ) Z ∗ ( − ) ` e i ` m ( θ s , φ s ) 2 ! ˜ 2 i ω rr s Numerical cal. ` =0 m = − ` S matrix V e ff A out S = e 2 i � ` m ≡ ( − ) ` +1 A out A in A in horizon r ∗ unstable circular orbit phase shift (Schwarzschild case) ω M = 5 Deflection angle Reflection rate 1.0 2 impact parameter Θ = 2Re d � ` | e 2 i δ ` | d ` 1 0.8 b = ` / ! M 0 0.6 - 1 - 2 0.4 b c - 3 0.2 - 4 - 5 Unstable Circular Orbit 0.0 20 40 60 80 100 0 10 20 30 40 50 60 √ ` c = 3 3 M ! b c

  22. Prüfer method Prüfer WKB no turning point turning point WKB method in two different forms Asymptotic form ① ② Phase shift ( d 2 u ` m e − i $ r ∗ ( r ∗ → −∞ ) + Q ( r ; ` , m ) u ` m = 0 u ` m = A sin [ ω r ∗ + ζ ] ( r ∗ → + ∞ ) , dr 2 ∗ � ` m − ⇡` / 2 u ` m ingoing @ horizon 0 0 0 = P ( r ∗ )) R dP dr ⇤ P ( r ⇤ ) + P 2 + Q = 0 ( u/u u ` m = e P = − i $ ( r ∗ → −∞ ) dr ∗ ˜ P = f ( P ) d ˜ ✓ ◆ P ω − Q 0 = ω cot [ ω r ∗ + ˜ sin 2 ( ω r ∗ + ˜ ˜ + P ) = 0 P = ζ ( r ∗ → + ∞ ) u/u P ( r ∗ )] dr ∗ ω Z ∞ ✓ ◆ ` + 1 Q − ! ) + ⇡` p � WKB = dr ∗ ( − ! r 0 ∗ ` m 2 2 r 0 ∗ turning point ˜ P ` < ` c P − i $ ζ ` > ` c V e ff critical value √ ` c = 3 3 M ! r ∗ r 0 ∗

  23. Phase shift (Kerr case) m = ± ` a = 0 . 6 M ω M = 30 rays on the equatorial plane prograde orbit 1.0 | e 2 i δ `` | 1.0 Re[ e 2 i δ `` ] 0.8 m = ` 0.5 0.6 0.0 0.4 - 0.5 0.2 - 1.0 0.0 0 100 200 300 400 0 100 200 300 400 ` ` retrograde orbit 1.0 Re[ e 2 i δ ` , − ` ] 1.0 | e 2 i δ ` , − ` | 0.8 m = − ` 0.5 0.6 0.0 0.4 - 0.5 0.2 - 1.0 0.0 0 100 200 300 400 0 100 200 300 400 ` `

  24. observer’s sky source plane Sum over the partial waves ` G ( x , x s ) ≡ e i ! ( r ∗ + r s ∗ ) ∞ �` m X X ( − ) ` e i r e 2 i � ` m Z ` m ( θ , φ ) Z ∗ ` m ( θ s , φ s ) 2 ! ˜ 2 i ω rr s cv ` =0 m = − ` For , ` max = 420 ω M = 30 G ( x , x s ) ∼ 160 , 000 terms equatorial plane ϑ s 10 , 000 points on the obs. plane ϕ s r s 160 , 000 × 10 , 000 = 1 , 600 , 000 , 000 ϑ terms φ r It takes 2~4 days with a PC (8 cores)

  25. observer’s sky source plane 1. Introduction & Motivation 2. Wave scattering by a Kerr BH 3. Interference patterns & Images ϑ s ϕ s r s ϑ φ r

  26. Interference patterns ω M = 30 a = 0 . 5 M a = 0 a = 0 . 3 M concentric -0.5 0 0.5 -0.5 0 0.5 +0.1 0.4 0.7 Diamond-shaped caustic a = 0 . 9 M a = 0 . 7 M a/M = 0 . 7 ϑ +0.2 1.0 φ +0.3 1.2 0.7

  27. Caustics by the winding mode G = G direct + G wind | G wind | ∼ 10 − 1 | G direct | ` ≤ ` c ` > ` c a=0 a=0.7 Dragging e ff ects 0.015 on and G wind 0.025 G direct E ff ect of unstable circular orbit are di ff erent. 0.020 0.010 0.015 0.005 0.010 0.005 - 0.3 - 0.2 - 0.1 0.1 0.2 0.3 0.4 0.6 0.8 1.0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend