nanolasers
play

Nanolasers: Current Status of Trailblazer of Synergetics Cun-Zheng - PowerPoint PPT Presentation

Nanolasers: Current Status of Trailblazer of Synergetics Cun-Zheng Ning cning@asu.edu, http://nanophotonics.asu.edu School of Electrical, Computer, and Energy Engineering Arizona State University Support: ARO, AFOSR, DARPA, NASA, SFAz


  1. Nanolasers: Current Status of Trailblazer of Synergetics Cun-Zheng Ning cning@asu.edu, http://nanophotonics.asu.edu School of Electrical, Computer, and Energy Engineering Arizona State University Support: ARO, AFOSR, DARPA, NASA, SFAz cning@asu.edu, http://nanophotonics.asu.edu

  2. Miniaturization of Semiconductor Lasers mm ~ cm scale (1962) 0.5 mm First laser diode (GaAs) Lincoln Lab 100 nm ~ µ m scale (2012) cning@asu.edu, http://nanophotonics.asu.edu

  3. Radiative coupling between light and semiconductor Engineering Photon-Semiconductor Interaction ( ) ( ) • ρ r ∝ ρ ph ω E e cv Density of Photonic States Density of Electronic States 2 ω ( ) 3 ρ D ω = 0 3 Free space: * 0 1 2 ph 2 3 m π 2 c Cavity Size Reduction ( )   3 ρ = − D E E E Bulk   Size Quantization e 2 2 2 g π   h   3D cavity: 1 1 κ * m ( ) ( ) ρ cav ω = 2 ρ = D E ( ) QW: ph 2 π V 2 ω − ω + κ e 2 π h c 0 Decreasing V c 2 * 1 m ( ) 1 ρ D = E QWR: e π − E E Purcell Enhancement h n ( ) 3 ρ cav ω λ 3   0 0 2 ( ) ρ D = δ E − = ph = E F Q QD:   ( ) e n P 3 2 4 ρ D ω π V   0 ph c   cning@asu.edu, http://nanophotonics.asu.edu

  4. Engineering the Densities of States Density of Photonic States Density of Electronic States ( ) ρ cav ω 0 ph 2 ω ( ) 3 ρ D ω = 0 0 ph 2 3 π c Cavity Size Reduction Size Quantization More efficiently use of photons More efficiently use of electrons/holes More efficiently coupling photons and semiconductors cning@asu.edu, http://nanophotonics.asu.edu

  5. Why Nanolasers? From Application Point of View • Optical and electronic integration, size compatibility with electronic devices • VLSI photonics: more functions in smaller volume • On-chip light sources (e.g., micro and nano-fluidic) • General trends in nanotechnology development: the smaller the better • Other new applications not envisioned yet, but will be enabled once smaller and smaller lasers are available cning@asu.edu, http://nanophotonics.asu.edu

  6. Moore’s Law in Photonics M.K. Smit, Moore’s law in photonics cning@asu.edu, http://nanophotonics.asu.edu

  7. Moore’s Law in Photonics Technology Breakup M.K. Smit, Moore’s law in photonics cning@asu.edu, http://nanophotonics.asu.edu

  8. Moore’s Law for Microelectronics cning@asu.edu, http://nanophotonics.asu.edu

  9. Challenges for Nanophotonics • Size, Size, and Size / 2 > λ n a) Passive devices (waveguides): , single mode fiber: 5 µ µ µ µ m; silicon wire or other semiconductor nanowire: 100-200 nm b) Active devices: (lasers): gain length required to achieve threshold: 1-100 µ µ µ µ m, large footprint, difficult for integrate • Complexity, diversity, and cost: diversity of devices and materials, small market share of each device, expensive manufacturing • Compatibility with silicon for integration with electronics light emitting materials: non-silicon (III-V, II-VI) such as GaAs, InP • No silicon light source (external to CMOS) • … cning@asu.edu, http://nanophotonics.asu.edu

  10. Examples of Smallest Lasers…( before 2007) (what is in common: pure dielectric waveguide structures) nanowire substrate 55 nm-think ZnO nanocrystal layer is Erbium doped silica disk of 60 microns in diameter on a dispersed on a SiO 2 disk of 10 microns in silicon stem (Kippenberg, PRA 2006) (optically pumped) diameter, Liu et al, APL (2004) Park et al. Science 305 , 1444 InAs/AlGaAs single layer of QD, 60 nW output (2004). (Optically pumped, RT-CW, smallest, PC laser, (Painter group, Opt. Exp. 2006) Baba’s group, InGaAsP/InP, Opt. Exp.2007) cning@asu.edu, http://nanophotonics.asu.edu

  11. Questions • Can lasers be made even smaller? • What is the ultimate size limit? • How about electrical injection, rather than optical? • Can you make a laser that is smaller than vacuum wavelength in all three dimensions (DARPA NACHOS program)? NACHOS (Nanoscale Architectures for Coherent Hyper-Optic Sources) Goals: Electrical injection, room temperature, subwavelength in all 3- dimensions cning@asu.edu, http://nanophotonics.asu.edu

  12. How to Make Smaller Cavities? • Pure dielectric cavities are not adequate • Metallic, especially plasmonic structures offer potential hope Plasmonics, Spasers, Before 2007…. • Bergman and Stockman, PRL 2003 • Stockman and Bergman, Laser Phys, 2004 • Nezhad, Tedz, and Fainman, Opt. Exp. 2004 • Maier, Opt. Comm. 2006 • Miyazaki and Kurokawa, PRL 2006 cning@asu.edu, http://nanophotonics.asu.edu

  13. Plasmon Photon Coupling Plasma/Plasmon: Longitudinal excitation of electron motion (in metals or doped semiconductors) Drude model: 1/2 2 ω 2 Ne   ω =  ε ω ( ) = − 1 p p ε  2 ω + γω m i 0   Surface Plasmon or Surface Plasmon Polariton: Coupled EM wave and plasmon excitation at the interface of a dielectric layer and a metallic layer. ε 1 ω ε ε = 1 2 k ε 2 z ε + ε c 1 2 cning@asu.edu, http://nanophotonics.asu.edu

  14. Surface Plasmon Polariton (SPP) 2 π 540 λ SPP wave along the interface nm λ = 15 . 4 0 = = eff k ′ 35 λ nm eff z k ′ z Semiconductor Silver Silver 2 ( ′ ′ ′ ) + = i k i k z I I e k ′ ′ 0 z (eV) Near SPP Resonance: 1) Huge wave compression (35 nm) 2) Strong localization ( few nm) 3) Huge loss (3.6 million 1/cm) ~ nm cning@asu.edu, http://nanophotonics.asu.edu

  15. Lasers, Spasers, and Photon-Plasmon Coupling k ω = k n c BPP SPP ω SP BP Plasmonicity ω ω p p SPASERS: Bergman and Stockman, 2 Phys. Rev. Lett. 90 , 027402 (2003) cning@asu.edu, http://nanophotonics.asu.edu

  16. Light Coupling to SPP Mode: Dramatic Purcell Enhancement InGaN QW-Silver (8nm) by GaN thickness: (Neogi et al, PRB66, 153305(2002) Neogi et al, PRB, 2002 cning@asu.edu, http://nanophotonics.asu.edu

  17. Feasibility of a Semiconductor-Core Metal-Shell (Jan 2007 SPIE Paper) Maslov-Ning , 2007 cning@asu.edu, http://nanophotonics.asu.edu

  18. First Experimental Demonstration of the Semiconductor-Metal Core-Shell Laser M. Hill et al. Nat. Photonics, 1, (2007),589 cning@asu.edu, http://nanophotonics.asu.edu

  19. A Zoo of Nanolaser Designs… after 2007 (What is in Common? Everyone Likes Metals) Chuang-Bimberg Group Hill , 2007 Hill -Ning 2009 Maslov-Ning , 2007 250 nm Ni/Au Aluminum 230 nm Alumina p-GaN PMMA MQW Ti/Au n-GaN (Wu Group, Berkeley) (Zhang Group, 2009 Sapphire Yang Group Fainman UCSD) Noginov/Shalaev, 2009) Painter Group 2009 (Lieber, Harvard, Park, Korea) cning@asu.edu, http://nanophotonics.asu.edu

  20. Summary of Short History and Status • Design and theoretical study: Maslov and Ning, Proc. SPIE 6468, (2007)64680I • 1 st experimental demonstration: M. Hill et al. Nat. Photonics, 1, (2007),589 • Electrical injection sub-half-wavelength laser: Hill et al, Opt. Exp., 2009 • Metal encased in a doped shell: Noginov et al., 2009 • Wire on a metal surface: Oulton et al., 2009 • Metal-semiconductor disk laser, Parahia et al, APL, 95 (2009) 201114 • Optically pumped lasing at RT: Nezhad et al, Nat. Phontonics, 4, (2010),395 • Nano patch laser: Yu et al., Opt. Exp. , 18 (2010) 8790 • Nano pan laser: Kwon et al. (2010), Nano. Lett, 10, (2010),3679 • Metallic cavity VCSEL, RT operation, Lu et al, Appl. Phys. Lett, 96, 251101 (2010) • Goals: Sub-wavelength, CW RT operation, electrical injection cning@asu.edu, http://nanophotonics.asu.edu

  21. Semiconductor-Metal Core-Shell Nanolaser n-contact 500 polyamide n-InP 300 nm Ag Si 3 N 4 500 InGaAs p-InP Ti/Pt/Au p-cntct InP Subs. Circular pillars: diameters ~280nm to 500nm � Rectangular pillars: 6 and 3 micron long; core width � ~80nm +/- 20nm to ~340nm Hill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, Nötzel, Ning, Smit, Opt. Exp.,17, 11107 (2009) cning@asu.edu, http://nanophotonics.asu.edu

  22. Lasing in a Silver-Coated 90+40 nm-Thick Pillar: (thickness below half-wavelength limit) Total light output vs current 4 Run6 row 1 dev #17, 10K, 130uA 5 7 x 10 x 10 Run 6 row 1 dev #18 10K 6 90nm Run6 row 1 dev #17, 10K 6 40 microamps 5 450 60 microamps 80 microamps 400 100 microamps 5 350 4 Intensity (counts) Intensity (counts) Intensity (counts) 300 4 250 200 3 150 3 100 50 2 2 0 1300 1350 1400 1450 1500 wavelength (nm) 1 1 0 0 1250 1300 1350 1400 1450 1500 1550 0 50 100 150 200 250 Wavelength (nm) current (microamps) / 2 670 = λ = Optical thickness = 3.1X90 + 2X20X2 + 2X10X2 = 400 nm < DL nm (Semicond.) (Dielectric) (Metal) The thinnest electrical injection laser ever demonstrated ! Hill, Marell, Leong, Smalbrugge, Zhu, Sun, Veldhoven, Geluk, Karouta, Oei, Nötzel, Ning, Smit, Opt. Exp.,17, 11107 (2009) cning@asu.edu, http://nanophotonics.asu.edu

  23. More Recent Progress on Nanolasers with V < λ λ λ λ 3 2009, pulse, LT 2011, CW 260K 2012, CW, RT wide linewidth A 10 7 6 Integrated intensity (a.u.) 8 5 linewidth (nm) 6 4 3 4 2012, CW, RT 2 2 final goal! 1 0 0 0.0 0.5 1.0 1.5 2.0 Current (mA) cning@asu.edu, http://nanophotonics.asu.edu

  24. cning@asu.edu, http://nanophotonics.asu.edu

  25. cning@asu.edu, http://nanophotonics.asu.edu

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend