multifractality and extreme value statistics
play

Multifractality and extreme value statistics O. Giraud LPTMS - CNRS - PowerPoint PPT Presentation

Multifractality and extreme value statistics O. Giraud LPTMS - CNRS and Universit Paris Sud, Orsay Luchon, March 18, 2015 Outline Multifractality Logarithmically correlated random fields Disorder-generated multifractals


  1. Multifractality and extreme value statistics O. Giraud LPTMS - CNRS and Université Paris Sud, Orsay Luchon, March 18, 2015

  2. Outline • Multifractality • Logarithmically correlated random fields • Disorder-generated multifractals • Critical random matrix ensembles [Y. V. Fyodorov and O. Giraud, Chaos, Solitons and Fractals 74 , 15 (2015)]

  3. Multifractals ◮ d -dimensional lattice ◮ linear size L , lattice spacing a ◮ M = ( L/a ) d ≫ 1 lattice sites with intensities h i > 0 h i ∼ M x i f ( x ) ✻ Multifractal Ansatz : 1 q � ln h i M � � ρ M ( x ) = δ ln M − x i =1 √ ln M M f ( x ) , ≈ c M ( x ) ( M ≫ 1) f ( x ) singularity spectrum ✲ 0 x x − x 0 x +

  4. Multifractality is characterized by : ◮ Power-law correlation of intensities � y q,s � | r 1 − r 2 | � − z q,s � L E { h q ( r 1 ) h s ( r 2 ) } ∝ , a ≪ | r 1 − r 2 | ≪ L a a ◮ Spatial homogeneity � � � d ( ζ q − 1) 1 � L E { h q ( r ) } = E � h q ( r ) ∝ M a r If • intensities do not vary much over the scale a E { h q ( r 1 ) h s ( r 2 ) } ∼ E h q + s ( r 1 ) � � | r 1 − r 2 | ∼ a • intensities are uncorrelated at scale L E { h q ( r 1 ) h s ( r 2 ) } ∼ E { h q ( r 1 ) } E { h s ( r 2 ) } | r 1 − r 2 | ∼ L then y q,s = d ( ζ q + s − 1) , z q,s = d ( ζ q + s − ζ q − ζ s + 1) ⇒ multifractal pattern characterized by ζ q

  5. Large deviations Saddle-point approximation for partition function : � ∞ M c M ( y ∗ ) � h q M qy ρ M ( y ) dy ≈ M ζ q , Z q = i = M ≫ 1 � | f ′′ ( y ∗ ) | −∞ i =1 with f ′ ( y ∗ ) = − q and ζ q = f ( y ∗ ) + q y ∗ (Recall multifractal Ansatz : � ln h i M � √ � ln M M f ( x ) , ρ M ( x ) = ≈ c M ( x ) M ≫ 1) δ ln M − x i =1 Counting function � ∞ c M ( x ) M f ( x ) N M ( x ) = ρ M ( y ) dy ≈ √ | f ′ ( x ) | ln M x Statistics of extreme values of h = M x ⇔ N M ( x ) ∼ 1

  6. Log-correlated fields Logarithm of the multifractal field : V ( r ) = ln h ( r ) − E { ln h ( r ) } With d dsh s | s =0 = ln h one gets 0 ln | r 1 − r 2 | E { V ( r 1 ) V ( r 2 ) } = − d ζ ′′ L ( ζ ′′ 0 : second derivative of ζ q taken at q = 0 ). i.e. multifractal pattern ⇔ log-correlated random field

  7. Gaussian 1 /f noises ∞ 1 v n e int + v n e − int � � √ n � V ( t ) = , t ∈ [0 , 2 π ) n =1 v n , v n complex normal i.i.d. variables with mean zero and variance 1 Then E { V ( t 1 ) V ( t 2 ) } = − 2 ln | 2 sin t 1 − t 2 | , t 1 � = t 2 2 � t = 2 π � Discrete version : M ≫ 1 , V k ≡ V M k random variables with covariance matrix C km = E { V k V m } given by � � 2 sin π ( k − m ) � V 2 � � � � E { V k V m } = − 2 ln � , C kk = E > 2 ln M � � k M h i = e V i Z q = � h q � ∞ i and N M ( x ) = x ρ M ( y ) dy can be obtained analytically

  8. Moment distribution Discrete periodic Gaussian 1 /f noise � 1+ 1 � 1 M 1+ q 2 1 � Z e q 2 � Ze q 2 − P ( Z q ) = e , Z e = Zq q 2 Z e Γ(1 − q 2 ) Z q for Z q < M 2 and | q | < 1 [Fyodorov Bouchaud (2008)] c M ( y ∗ ) c M ( x ) M ζ q , M f ( x ) √ Z q ≈ N M ( x ) ≈ � | f ′′ ( y ∗ ) | | f ′ ( x ) | ln M ⇒ distribution of N M ( x ) via c M Power-law tail P ( z ) ∼ z − 1 − 1 q 2 for the scaled variable z = Z q /Z e

  9. Typical extreme value Typical counting function N t ( x ) : e E { ln N M ( x ) } ∼ N t ( x ) Scaled counting function n = N M ( x ) / N t ( x ) characterized by P x ( n ) = 4 − 4 x 2 n − ( 1+ 4 x 2 ) , x 2 e − n 0 < x < 2 and M f ( x ) 1 f ( x ) = 1 − x 2 / 4 N t ( x ) = √ Γ(1 − x 2 / 4) , x ln M Threshold for typical value N t ( x ) ∼ 1 x m = 2 − 3 ln ln M + O (1 / ln M ) 2 ln M

  10. Average extreme value E ( n ) = Γ(1 − x 2 / 4) N M ( x ) = n N t ( x ) and E {N M ( x ) } = Γ(1 − x 2 / 4) N t ( x ) ⇒ 1 1 − x 2 / 4 � � Γ ∼ x → 2 2 − x Threshold for average value E {N M ( x ) } ∼ 1 x m = 2 − 1 ln ln M + O (1 / ln M ) 2 ln M Threshold for typical value N t ( x ) ∼ 1 x m = 2 − 3 ln ln M + O (1 / ln M ) 2 ln M

  11. Disorder-generated multifractals | ψ � = � M i =1 ψ i | i � normalized vector : h i = | ψ i | 2 ∼ M − α i , i = 1 , . . . M, multifractal Ansatz ρ M ( α ) ∝ M f ( α ) , ( ρ M ( α ) the density of exponents α i ) or M | ψ i | 2 q ∝ M − τ q , � Z q = τ q = D q ( q − 1) i =1 Inverse participation ratios = exp E { ln Z q } ∼ M − τ typ E { Z q } ∼ M − τ q Z typ q q Scaling � ∞ M � h q M − qα ρ M ( α ) dα Z q = i = 0 i =1

  12. Singularity spectrum τ q f ( α ) ✻ ✻ 1 q ♣ ♣ ♣ ♣ ♣ ♣ ♣ ✲ q q min q 1 q q max − 1 ✲ 0 α α − α 0 ♣♣♣♣♣♣♣♣ α + ♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣♣ ♣♣♣♣♣ � α + M − qα + f typ ( α ) dα ∼ M − τ typ Z typ q ( qα − τ q ) , f ( α ) = min = q q α − Counting function � α N M ( α ) = ρ M ( α ) dα −∞ and scaled variable N M ( α ) ≃ n N t ( α )

  13. Extreme value statistics Distribution of the scaled variable z = Z q /Z typ q P ( z ) ∼ z − 1 − ω q ⇒ Power-law tail [Mirlin-Evers 2000] Tail with ω q → 1 for q → q c = q max ⇒ Divergence of E ( z ) ∼ q → q c | q − q c | − 1 ⇒ Divergence of E ( n ) ∼ α → α − | α − α − | − 1 M f ( x ) M f ( α ) 1 1 N t ( x ) = √ − → N t ( α ) ∝ √ Γ(1 − x 2 / 4) E ( n ) x ln M ln M Threshold for typical value N t ( α ) ∼ 1 α m ≈ α − + 3 1 ln ln M f ′ ( α − ) 2 ln M Extreme value | ψ max | 2 = M − α m

  14. Random matrix ensembles with multifractal eigenvalues One-dimensional N -body models with Hamiltonian H ( p , q ) ◮ equations of motion are equivalent to ˙ L = K L − L K L, K pair of Lax matrices of size M × M ◮ explicit canonical transformation to action-angle variables We choose L ( p , q ) as a random matrix with some measure d L = P ( p , q ) d p d q Canonical transformation d L = P ( λ , φ ) d λ d φ with λ = ( λ 1 , . . . , λ M ) eigenvalues of L . Integration over φ yields P ( λ )

  15. Ruijsenaars-Schneider model � 1 � 2 sin 2 τ Hamiltonian H ( p , q ) = � j cos( p j ) � 1 − k � = j qj − qk sin 2 [ ] 2 Lax matrix : sin[ q j − q s qk − qj ] sin τ 1 sin[ q k − q s e i[ τ ( N − 1)+ p j + + τ ] − τ ] 2 2 � � 2 2 L jk = sin[ q j − q s sin[ q j − q k sin[ q k − q s 1 ] ] + τ ] 2 2 s � = j 2 2 s � = k For q k = 2 πk/M and τ = πa/M , L jk = e i p j 1 − e 2 π i a 1 − e 2 π i( j − k + a ) /M M p j = independent random variables uniformly distributed in [0 , 2 π ] [Phys. Rev. Lett. 103 , 054103 (2009)]

  16. Multifractality of eigenvectors Eigenvectors of L jk = e i p j 1 − e 2 π i a 1 − e 2 π i( j − k + a ) /M , M 2 1 1 0 typ f( α) τ q , τ q -1 0 -2 -3 -1 0 1 2 3 0 0.5 1 1.5 2 q α a = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9

  17. Perturbation expansion for RS Fractal dimensions are accessible via perturbation series L mn = e iΦ m 1 − e 2 π i a 1 − e 2 π i( m − n + a ) /M M Perturbation series are possible around all integer points a = κ , a = κ + ǫ � 1 + π i( M − 1) � L mn = L (0) + ǫL (1) mn + O ( ǫ 2 ) ǫ mn M where L (0) e iΦ m δ n, m + κ = mn π e − π i( m − n + κ ) /M L (1) e iΦ m (1 − δ n, m + κ ) = mn M sin( π ( m − n + κ ) /M ) ( δ n, m + κ = 1 when n ≡ m + κ mod M and 0 otherwise)

  18. Fractal dimensions for RS ◮ Strong multifractality (almost localized) : a ≪ 1 , L (0) mn diagonal ◮ Unperturbed eigenfunctions Ψ (0) j ( α ) = δ jα ◮ Unperturbed eigenvalues λ α = e iΦ α At first order in a � � q − 1 Γ 2 √ π Γ( q − 1) τ q = 2 a ◮ Weak multifractality (almost extended) : a = κ + ǫ and κ � = 0 . The unperturbed matrix L (0) mn = e iΦ m δ n, m + κ is the shift matrix and its eigenfunctions are extended. τ q = q − 1 − q ( q − 1)( a − κ ) 2 , | a − κ | ≪ 1 κ 2 [Phys. Rev. Lett. 106 , 044101 (2011)]

  19. Correlations in the Ruijsenaars-Schneider model V i = ln | Ψ i | 2 − E � ln | Ψ i | 2 � Weak multifractality limit a = κ + ǫ with κ � = 0 Expansion to order 2 in ǫ , κ = 1 :   E { V k ( α ) V k + r ( α ) } = π 2 ǫ 2 x (2 r − x − M )) ( x − 2 r )( M − x ) � � +  sin 2 πx sin 2 πx M 3 x<r M M x ≥ r ( E = average over eigenvectors α , phases Φ and position k ) For r = cM , M → ∞ , c fixed, E { V k ( α ) V k + r ( α ) } ∼ − 2 ǫ 2 ln r M , r ≪ M ⇒ hidden logarithmic structure of the RS model. Compare with 0 ln | r 1 − r 2 | E { V ( r 1 ) V ( r 2 ) } = − d ζ ′′ L Here τ q = q − 1 − q ( q − 1) ( a − k ) 2 ⇒ τ ′′ 0 = − 2 ǫ 2 k 2

  20. Correlations in the Ruijsenaars-Schneider model 1 6 4 slope E{V i V j } 0.5 2 0 -2 0 0 2 4 6 8 0 0.2 0.4 0.6 0.8 1 -ln(|i-j|/N) a a = 0 . 1 (black), 0.3 (red), 0.5 (green), 0.7 (blue), 0.9 (orange) stars : τ ′′ q at q = 0 circles : slope of the correlator − τ ′′ − τ ′′ q | q =0 = 2(1 − a ) 2 , q | q =0 = 4 a ln 4 , a ≃ 0 , a ≃ 1

  21. Extreme values in RS For a = 0 . 7 , M up to 2 12 1.5 1.5 1 1 P(y) P(y) 0.5 0.5 0 0 -2 -1 0 1 2 0 1 2 3 4 5 6 7 y y 3 y → y − α − ln M − 2 f ′ ( α − ) ln ln M y = − ln h m 1.5 1 P(y) 0.5 0 -2 -1 0 1 2 y

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend