multifractality of wave functions interplay with
play

Multifractality of wave functions: Interplay with interaction, - PowerPoint PPT Presentation

Multifractality of wave functions: Interplay with interaction, classification, and symmetries Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg I. Burmistrov , Landau Institute I. Gornyi, S. Bera, F. Evers ,


  1. Multifractality of wave functions: Interplay with interaction, classification, and symmetries Alexander D. Mirlin Karlsruhe Institute of Technology & PNPI St. Petersburg I. Burmistrov , Landau Institute I. Gornyi, S. Bera, F. Evers , Karlsruhe I. Gruzberg , Chicago A. Ludwig , Santa Barbara M. Zirnbauer , K¨ oln

  2. Plan • Introduction: Anderson localization and multifractality • Multifractality and interaction • Dephasing and temperature scaling at localization transitions Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 326, 1457 (2011) • Enhancement of superconductivity by Anderson localization Burmistrov, Gornyi, ADM, PRL 108, 017002 (2012) • Classification of composite operators and symmetry properties of scaling dimensions Gruzberg, Ludwig, ADM, Zirnbauer, PRL 107, 086403 (2011); Gruzberg, ADM, Zirnbauer, to be published

  3. Anderson localization Philip W. Anderson 1958 “Absence of diffusion in certain random lattices” sufficiently strong disorder − → quantum localization − → eigenstates exponentially localized, no diffusion − → Anderson insulator Nobel Prize 1977

  4. Anderson transition 2 /h) g=G/(e 1 d=3 β = dln(g) / dln(L) Scaling theory of localization: 0 Abrahams, Anderson, Licciardello, d=2 Ramakrishnan ’79 −1 d=1 Modern approach: RG for field theory ( σ -model) 0 ln(g) quasi-1D, 2D: metallic → localized crossover with increasing L d > 2: metal-insulator transition delocalized localized ��� ��� ��� ��� ��� ��� disorder ��� ��� critical ��� ��� point review: Evers, ADM, Rev. Mod. Phys. 80, 1355 (2008)

  5. Field theory: non-linear σ -model S [ Q ] = πν � d d r Tr [ − D ( ∇ Q ) 2 − 2 iω Λ Q ] , Q 2 (r) = 1 4 Wegner ’79 σ -model manifold: symmetric space e.g. for broken time-reversal invariance: U(2 n ) / U( n ) × U( n ) , n → 0 with Coulomb interaction: Finkelstein’83 supersymmetry (non-interacting systems): Efetov’82

  6. Anderson localization & topology: Integer Quantum Hall Effect IQHE flow diagram von Klitzing ’80 ; Nobel Prize ’85 Khmelnitskii’ 83, Pruisken’ 84 localized localized Field theory (Pruisken): ��� ��� ��� ��� ��� ��� ��� ��� σ -model with topological term critical point − σ xx 8 Tr( ∂ µ Q ) 2 + σ xy � � � d 2 r S = 8 Tr ǫ µν Q∂ µ Q∂ ν Q → n = . . . , − 2 , − 1 , 0 , 1 , 2 , . . . protected edge states QH insulators − → Z topological insulator −

  7. Multifractality at the Anderson transition d d r | ψ (r) | 2q � P q = inverse participation ratio  L 0 insulator   L − τ q � P q � ∼ critical L − d ( q − 1) metal   τ q = d ( q − 1) + ∆ q ≡ D q ( q − 1) multifractality normal anomalous metallic critical d τ q − → Legendre transformation f( α ) − → singularity spectrum f ( α ) α + α − 0 | ψ | 2 large 2 small | ψ | wave function statistics: P (ln | ψ 2 | ) ∼ L − d + f (ln | ψ 2 | / ln L ) α d α 0 L f ( α ) – measure of the set of points where | ψ | 2 ∼ L − α

  8. Multifractality (cont’d) • Multifractality implies very broad distribution of observables characterizing wave functions. For example, parabolic f ( α ) implies log-normal distribution P ( | ψ 2 | ) ∝ exp {− # ln 2 | ψ 2 | / ln L } • field theory language: ∆ q – scaling dimensions of operators O ( q ) ∼ ( Q Λ) q Wegner ’80 • Infinitely many operators with negative scaling dimensions, i.e. RG relevant (increasing under renormalization) • 2-, 3-, 4-, . . . -point wave function correlations at criticality �| ψ 2 i ( r 1 ) || ψ 2 j ( r 2 ) | . . . � also show power-law scaling controlled by multifractality • boundary multifractality Subramaniam, Gruzberg, Ludwig, Evers, Mildenberger, ADM, PRL’06

  9. Dimensionality dependence of multifractality 4 Analytics (2 + ǫ , one-loop) and numerics 3 D q 2 ~ τ q = ( q − 1) d − q ( q − 1) ǫ + O ( ǫ 4 ) 1 f ( α ) = d − ( d + ǫ − α ) 2 / 4 ǫ + O ( ǫ 4 ) 0 0 1 2 3 d = 4 (full) q d = 3 (dashed) 4 d = 2 + ǫ, ǫ = 0 . 2 (dotted) d = 2 + ǫ, ǫ = 0 . 01 (dot-dashed) 3 3 f( α ) 2 2 Inset: d = 3 (dashed) f( α ) ~ 1 ~ vs. d = 2 + ǫ , ǫ = 1 (full) 1 0 0 −1 0 1 2 3 4 5 α Mildenberger, Evers, ADM ’02 −1 0 1 2 3 4 5 6 7 α

  10. Multifractality at the Quantum Hall transition 2.0 Evers, Mildenberger, ADM ’01 1.5 1.0 2.0 ( α ) 0.5 1.5 f L=16 f( α ) L=128 1.0 0.0 L=1024 0.5 −0.5 0.0 0.8 1.2 1.6 2.0 2.4 −1.0 0.5 1.0 1.5 2.0 2.5 α

  11. Multifractality: Experiment I Local DOS fluctuations near metal-insulator transition in Ga 1 − x Mn x As Richardella,...,Yazdani, Science ’10

  12. Multifractality: Experiment II Ultrasound speckle in a system of randomly packed Al beads Faez, Strybulevich, Page, Lagendijk, van Tiggelen, PRL’09

  13. Multifractality: Experiment III Localization of light in an array of dielectric nano-needles Mascheck et al, Nature Photonics ’12

  14. Dephasing at metal-insulator and quantum Hall transitions Burmistrov, Bera, Evers, Gornyi, ADM, Annals Phys. 326, 1457 (2011) e-e interaction − → dephasing at finite T − → smearing of the transition local. length ξ ∝ | n − n c | − ν , dephasing length L φ ∝ T − 1 /z T δn ∝ T κ , − → transition width κ = 1 /νz T We focus on short-range e-e interaction: • long-range Coulomb interaction negligible because of large dielectric constant • 2D: screening by metallic gate • interacting neutral particles (e.g. cold atoms) Earlier works: Lee, Wang, PRL’96 ; Wang, Fisher, Girvin, Chalker, PRB ’00

  15. Temperature scaling of quantum Hall transition Transition width exponent κ = 1 /νz T = 0 . 42 ± 0 . 01 Wei, Tsui, Paalanen, Pruisken, PRL’88 ; Li et al., PRL’05, PRL’09

  16. Interaction scaling at criticality K 1 = ∆ 2 �� � 2 δ ( E + ω − ǫ α ) δ ( E − ǫ β ) � � � � B αβ ( r 1 , r 2 ) 2 αβ B αβ ( r 1 , r 2 ) = φ α ( r 1 ) φ β ( r 2 ) − φ α ( r 2 ) φ β ( r 1 ) α β α β � µ 2 � | r 1 − r 2 | K 1 ( r 1 , r 2 , E, ω ) = L − 2 d , | r 1 − r 2 | ≪ L ω L ω L ω = L (∆ / | ω | ) 1 /d length scale set by frequency ω

  17. Interaction scaling at quantum Hall critical point Hartree, Fock Hartree – Fock enhanced by multifractality suppressed by multifractality exponent ∆ 2 ≃ − 0 . 52 < 0 exponent µ 2 ≃ 0 . 62 > 0

  18. Interaction-induced dephasing β r r γ 2 3 α γ β r r 3 2 α α δ α r r r r δ 4 4 1 1   4 ImΣ R (0 , 0) ∼ − 1 � � �  U ( r 1 − r 2 ) U ( r 3 − r 4 ) dr j d Ω Ω  2∆ 3 j =1 coth Ω 2 T − tanh Ω � � K 2 ( { r j } , 0 , 0 , ε ′ ∼ T, Ω) × 2 T K 2 ( { r j } , E, ε, ε ′ , Ω) = ∆ 4 � � B ∗ αβ ( r 1 , r 2 ) B δγ ( r 1 , r 2 ) B ∗ γδ ( r 3 , r 4 ) B βα ( r 3 , r 4 ) 8 αβγδ × δ ( E − ǫ α ) δ ( ε ′ + Ω − ǫ β ) δ ( ε ′ − ǫ γ ) δ ( ε + Ω − ǫ δ ) � . � µ 2 � R � α � | r 1 − r 2 | | r 3 − r 4 | K 2 ( { r j } , 0 , 0 , ε ′ ∼ Ω , Ω) = L − 4 d R R L Ω R = ( r 1 + r 2 − r 3 − r 4 ) / 2

  19. Interaction scaling at quantum Hall critical point: Second order black: N=512, red: 768, ρ /R = 1/2 blue: 1024 1/4 1/8 1.0 1.0 1/16 1/32 -2 µ 2 Κ 2 R/N 0.0 0.1 ( ρ /R) 0.5 0.5 1.0 -2 µ 2 Κ 2 ( ρ /R) α =0 α =-0.1 0.2 0.0 0.0 0.0 0.2 0.4 -2 -1 10 10 R/N R/N µ 2 = 0 . 62 ± 0 . 05 in agreement with scaling of first order α = − 0 . 05 ± 0 . 1 (in fact, exactly zero for unintary class; see below) Exponent α drops out of the expression for τ − 1 φ if α > 2 µ 2 − d — fulfilled for QH transition

  20. Scaling at QH transition: Theory and experiment • Theory (short-range interaction): ∝ T p with p = 1 + 2 µ 2 /d τ − 1 − → dephasing rate φ L φ ∝ T − 1 /z T dephasing length z T = d/p z T ν = 1 + 2 µ 2 /d 1 Transition width exponent κ = νd µ 2 ≃ 0 . 62 − → p ≃ 1 . 62 − → z T ≃ 1 . 23 ν ≃ 2 . 35 (Huckestein et al ’92, . . . ) − → κ ≃ 0 . 346 ν ≃ 2 . 59 − → κ ≃ 0 . 314 (Ohtsuki, Slevin ’09) • Experiment (long-range 1 /r Coulomb interaction): κ = 0 . 42 ± 0 . 01 Difference in κ fully consistent with short-range and Coulomb (1 /r ) problems being in different universality classes

  21. Anderson transition: 2 + ǫ dimensions, short-range interaction − dt/d ln L ≡ β ( t ) = ǫt − 2 t 3 − 6 t 5 + O ( t 7 ) (Wegner ’89) t = 1 / 2 πg g – dimensionless conductance � 1 / 2 � 3 / 2 � ǫ − 3 � ǫ + O ( ǫ 5 / 2 ) Metal-insulator transition at t ∗ = 2 2 2 ν = − 1 /β ′ ( t ∗ ) = 1 2 ǫ − 3 Localization length index 4 + O ( ǫ ) Exponents controlling scaling of interaction: √ 2 ǫ − 3 2 ζ (3) ǫ 2 + O ( ǫ 5 / 2 ) α = O ( ǫ 5 / 2 ) µ 2 = Temperature scaling of transition: √ √ 2 ǫ 1 / 2 + 5 ǫ − 4 2 ǫ 3 / 2 + O ( ǫ 2 ) z T = 2 − 2 √ √ 2 ǫ 3 / 2 + ǫ 2 + ǫ 5 / 2 / 2 + O ( ǫ 3 ) κ = ǫ +

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend