multi buffer simulations for trace language inclusion
play

Multi-Buffer Simulations for Trace Language Inclusion Norbert - PowerPoint PPT Presentation

Multi-Buffer Simulations for Trace Language Inclusion Norbert Hundeshagen 1 Dietrich Kuske 2 Milka Hutagalung 1 Etienne Lozes 3 Martin Lange 1 1 Universit at Kassel 2 TU Ilmenau 3 ENS Cachan GandALF 2016, Catania 14 September 2016 1 / 14


  1. Multi-Buffer Simulations for Trace Language Inclusion Norbert Hundeshagen 1 Dietrich Kuske 2 Milka Hutagalung 1 Etienne Lozes 3 Martin Lange 1 1 Universit¨ at Kassel 2 TU Ilmenau 3 ENS Cachan GandALF 2016, Catania 14 September 2016 1 / 14

  2. Overview Buffer Simulation Language Inclusion Simulation PSpace PTime Trace Language Multi-Buffer Inclusion Undecidable Simulation ??? 2 / 14

  3. Simulation � Language Inclusion ◮ simulation approximates language inclusion: L ( A ) ⊆ L ( B ) ◮ played between Spoiler ( S ) and Duplicator ( D ) ◮ construct two runs ρ A , ρ B stepwise ◮ D wins iff ρ B accepting or ρ A not accepting ◮ A ⊑ B iff D has winning strategy A B b a b Σ Σ a a Σ c Σ c A ⊑ B A B b b a Σ Σ a c a Σ Σ c A �⊑ B 3 / 14

  4. Mazurkiewicz Trace ◮ set of words, but some letters are allowed to commute ◮ equivalence class [ w ] I , I ⊆ Σ × Σ independence relations ◮ Def. : ∼ I is the least congruence on Σ ω with uabv ∼ I ubav for all ( a , b ) ∈ I and uv ∈ Σ ω ◮ Ex. : Σ = { a , b , c } , I = { ( a , c ) , ( c , a ) , ( b , c ) , ( c , b ) } bbcaca . . . ∼ I bcbaca . . . ∼ I cbbaca . . . [ bb ( ca ) ω ] I = { bbc ( ac ) ω , bcb ( ac ) ω , cbb ( ac ) ω , bb ( ac ) ω , . . . } ◮ Def. [ L ( A )] I = { u | u ∼ I w and w ∈ L ( A ) } ◮ Ex. c b b a [ L ( A )] I = [ bb ( ca ) ω ] I ◮ Given: A , B , and I Question: Is [ L ( A )] I ⊆ [ L ( B )] I ? undecidable [Sakarovitch’92] ◮ Extend buffer simulation to approximate L ( A ) ⊆ [ L ( B )] I 4 / 14

  5. Multi-Buffer Simulation ◮ played with m FIFO buffers on NBA A , B over Σ ◮ letter distribution ˆ Σ = (Σ 1 , . . . , Σ m ), Σ i ⊆ Σ ◮ buffers capacities κ = ( k 1 , . . . , k m ), k i ∈ N ∪ { ω } ◮ conf. : ( p , w 1 , . . . , w m , q ), w i ∈ Σ ≤ k i i ◮ in position ( p , w 1 , . . . , w m , q ) a ∈ Σ → p ′ 1. S : p − − − u ∈ Σ ∗ → q ′ , s.t. ( aw i ) Σ i = ( w ′ 2. D : q − − − − i u ) Σ i , for all i ∈ { 1 , . . . , m } ◮ next position ( p ′ , w ′ 1 , . . . , w ′ m , q ′ ) ◮ D wins iff ◮ ρ A not accepting, or ◮ ρ B accepting and | w A | a = | w B | a for all a ∈ Σ. ◮ A ⊑ κ Σ B iff D has winning strategy ˆ 5 / 14

  6. Examples ◮ ˆ Σ = ( { a , b } , { a } , { b } , { c } ) ⇔ I = { ( a , c ) , ( c , a ), ( b , c ) , ( c , b ) } c c b b c b b a a Buff 1 bb bb aa aa . . . Buff 2 aa aa . . . Buff 3 bb bb . . . Buff 4 cc cc cc . . . ◮ A ⊑ 2 , 1 , 2 , 0 B But, A �⊑ 2 , 0 , 2 , 0 B ˆ ˆ Σ Σ b a c c b c b b a a ◮ A ′ ⊑ ω,ω, 2 , 0 B ˆ Σ 6 / 14

  7. Properties of Multi-Buffer Simulation ◮ Thm. Given: A , B , k 1 , . . . , k n ∈ N , ˆ Σ Question: Is A ⊑ k 1 ,..., k n B ? decidable in PTime ˆ Σ ◮ reduce to A ⊑ B ′ , states in B ′ are o.t.f ( q B , w 1 , . . . , w n ) ◮ Thm. A ⊑ κ Σ B ⇒ L ( A ) ⊆ [ L ( B )] I ˆ ◮ ˆ Σ ⇔ I ◮ Ex. : I = { ( a , c ) , ( c , a ) , ( b , c ) , ( c , b ) } then ˆ Σ = ( { a , b } , { a } , { b } , { c } ) c c b b c b b a a A ⊑ 2 , 1 , 2 , 0 B ⇒ L ( A ) ⊆ [ L ( B )] I ˆ Σ ◮ Thm. If k 1 ≤ ℓ 1 , . . . , k n ≤ ℓ n , then and ∃ i , k i < ℓ i , then ⊑ k 1 ,..., k n � ⊑ ℓ 1 ,...,ℓ n ◮ Incremental approximation for L ( A ) ⊆ [ L ( B )] I 7 / 14

  8. Decidability of ⊑ k 1 ,..., k n , k 1 , . . . , k n ∈ N ∪ { ω } ˆ Σ ◮ Thm. Given: A , B Question: Is A ⊑ ω B ? decidable. EXPTIME-complete [H./Lange/Lozes’13] ◮ Thm. Given: A , B Question: Is A ⊑ k 1 ,..., k n B , k 1 , . . . , k n ∈ N ∪ { ω } ? undecidable ˆ Σ Question: Is A ⊑ ω, 0 B ? highly undecidable ˆ Σ 8 / 14

  9. ⊑ ω, 0 is Highly Undecidable ◮ Thm. Deciding A ⊑ ω, 0 B is B Σ 1 1 -hard ˆ Σ ◮ Reduction from Recursive B¨ uchi Game (RBG) Given: Computable graph G Question: Does D wins B¨ uchi Game on G ? . . . q 0 TM M E G : 00 1001 ⊲ 1 ♯ 1 0 0 ⊳ · · · . . . | = . . . 1 100 010 . . . . . . q acc accept ⊲ 1 0 0 ♯ · · · | = 9 / 14

  10. Reduction from RBG to Multi-Buffer Simulation ◮ Given RBG on comp. graph G . . . 00 00 1001 1001 . . . . . . 1 100 010 . . . ◮ � construct A , B : (sketch) ⊲ q 0 1 ♯ A S chs A sim A D chs A sim B S chs B sim B D chs B sim Buff1 10 1 ♯ 0 0 ♯ 0 01 ⊳ 0 ♯ 0 1 ⊲ q 0 ⊳ Buff2 10 / 14

  11. A D chs , B D chs ◮ D can chooses succesor node: C ⊳ ⊳ C 0 C 0 C 1 C 0 C C C C 1 Σ 0 C 1 1 C C ⊳ C ⊳ ◮ Σ 1 = { ⊳, 0 , 1 } ( ω -buffer) ◮ Σ 2 = { C ⊳ , C 0 , C 1 , C } (0-buffer) ◮ Ex. suppose D want to push 0 1 1 to ω -buffer Buff1 ⊲ q 0 1 0 ♯ 0 1 1 ⊳ Buff2 11 / 14

  12. Simulate computation of TM M with A sim , B sim δ : (Γ ∪ Q ) 4 → (Γ ∪ Q ) ≤ 5 ◮ Derive from δ � ˆ ◮ Ex. ⊲ q 0 1 ♯ 01 ⊳ | = ⊲ 1q 1 ♯ 01 ⊳ ˆ δ ( ⊲ q 0 1 ♯ )ˆ δ ( q 0 1 ♯ 0) ˆ δ (1 ♯ 01)ˆ δ (1 ♯ 01 ⊳ ) = ⊲ 1q 1 ♯ 01 ⊳ ◮ Encode ˆ δ on B sim A sim B sim accept accept Σ reject reject Buff1 “Conf1” “Conf1” “Conf2” . . . “Conf N ” ⇒ Buff2 Conf1 | = Conf2 | = . . . | = Conf N 12 / 14

  13. Conclusion and Further Work ◮ Multi-buffer simulation: ◮ incrementally approximates trace inclusion ◮ with bounded buffers is decidable in PTime ◮ with unbounded buffer is highly undecidable, i.e. B Σ 1 1 -hard ◮ Further work: flush variant 13 / 14

  14. Literature Mazurkiewicz, A. Introduction to trace theory. The Book of Traces 1995. Hutagalung, M. Lange, M. Lozes, E. Buffered simulation games for B¨ uchi automata. AFL 2014. Sakarovitch, L. The “last” decision problem for rational trace languages. LATIN 1992. D. L. Dill, A. J. Hu, and H. Wong-Toi. Checking for language inclusion using simulation relations. CAV 1992. 14 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend