moment
play

MOMENT Materials for Optical, Magnetic, and Energy Technologies - PowerPoint PPT Presentation

MOMENT Materials for Optical, Magnetic, and Energy Technologies Semiconducting and half metallic Heusler compounds for multifunctional applications Claudia Felser JST-DFG 2009 Heusler Compounds as Multifunctional Materials 1905


  1. MOMENT Materials for Optical, Magnetic, and Energy Technologies Semiconducting and half metallic Heusler compounds for multifunctional applications Claudia Felser

  2. JST-DFG 2009 Heusler Compounds as Multifunctional Materials 1905 • Magnetic material: Cu 2 MnAl 1983 • Halfmetallic ferromagnet: NiMnSb • Magneto-optical: PtMnSb • Magneto-mechanic: Ni 2 MnGa • Superconductor: Pd 2 YSn • Semiconductors: CoTiSb • Heavy fermion: Fe 2 VAl • Li-conductor: LiMnSb • Magneto-electronic: Co 2 FeSi 2001 • Thermo-electric: TiNiSn • Magneto-caloric: CoMnSb:Nb

  3. JST-DFG 2009 • Concept • Semiconducting Half Heusler •Thermoelectric materials •Diluted Semiconductors • Half metallic Heusler compounds •High Curie temperatures •Ferrimagnets • High energy photoemission for Devices • Summary

  4. JST-DFG 2009 • Concept • Semiconducting Half Heusler •Diluted Semiconductors •Thermoelectric materials • Half metallic Heusler compounds •High Curie temperatures •Ferrimagnets • High energy photoemission for Devices • Summary

  5. JST-DFG 2009 Rational Design Half metallicity High density of states at E F Large MR at room temperature Intermag 2002: Co 2 Cr 0.4 Fe 0.6 Al CCFA • First TMR device (Inomata et al.) 19% at RT • TMR-device with MgO (Marukame et al. APL 90 (2007) 012508) ⇒ 109% TMR at RT 88 % spin polarisation at 4K • Point contact 80% MR (Coey et al.) Patent (Felser, Block, DE 101 08 760, H01 L43/08 ) Block, Felser, et al. J. Solid State Chem. 176 , 646 (2003)

  6. JST-DFG 2009 Semiconducting Heuslers – Stuffed ZnS Synthesis XYZ X 2 YZ Si 2 Li 2 Cu Sb 2*1 + 11 + 5 = 18 Ga As Al Fe 2 V 3 + 5 = 8 2*8 + 5 + 3 = 24 Co Ti Sb additional t 2 -levels 9 + 4 + 5 = 18

  7. JST-DFG 2009 Slater-Pauling Rule Magic valence electron number X 2 YZ 24 Valence electrons =^24 + sat. magnetization E F Co 2 FeAl 2*9 + 8 + 3 = 29 Ms = 5 μ B Kübler 1983 Galanakis et al., PRB 66 , 012406 (2002) B. Balke et al., Sci. Technol. Adv. Mater. 9 (2008) 014102.

  8. JST-DFG 2009 • Concept • Semiconducting Half Heusler •Thermoelectric materials •Diluted Semiconductors • Halfmetallic Heusler compounds •High Curie temperatures •Ferrimagnets • High energy photoemission for Devices • Summary

  9. JST-DFG 2009 Half Heusler: 18 valence-electrons Thermoelectrica 1,8 Typ Material Price in $/kg Bi 2 (Te 0.8 Se 0.2 ) 3 (metals ) 1,6 CoSb 3 V-VI Bi 2 Te 3 140 (Zr 0.5 Hf 0.5 ) 0.5 Ti 0.5 NiSn 0.998 Sb 0.002 1,4 IV-VI PbTe 99 Figure of merit Z T Si 0.8 Ge 0.2 Zn 4 Sb 3 Zn 4 Sb 3 4 1,2 (Hf 0.5 Zr 0.5 )NiSn (OFZ) Silicides p-MnS i1.73 24 Mg 2 Si 0.8 Sn 0.2 n-Mg 2 Si 0.4 Sn 0.6 18 1,0 Si 0.80 Ge 0.20 660 0,8 Si 0.94 Ge 0.06 270 Skutterutides CoSb 3 11 0,6 Half-Heusler TiNiSn 55 n/p-Clathrate Ba 8 Ga 16 Ge 30 1000 0,4 without Ba 0,2 Oxides p-NaCo 2 O 4 , 17 without Na, O 0,0 Zintl Phasen p-Yb 14 MnSb 11 92 0 200 400 600 800 1000 Th 3 P La 3-X Te 4 160 4 Temperature T K Information H. Böttcher R. Asahi et al. J. Phys.: Cond. Mat. 20 (2008) 64227 K. Miyamoto et al. Appl. Phys. Express 1 (2008) 081901 E. Toberer, Nature Mat. 7 (2008) 105 VK Zaitsev et al. PRB 74 (2006) 045207

  10. JST-DFG 2009 Half Heusler for Thermoelectrics 40 (a) VFeSb TiCoSb YNiSb 30 Survey on HiTT –Materials 20 −1 ) 10 −1 cell 0 DOS (states eV 40 (b) TiCoSb VCoSn NbCoSn 30 20 (Zr 0.5 Hf 0.5 )Ti 0.5 NiSn 0.998 Sb 0.002 -1 ] 0 10 Seebeck coefficient S (T) [ μ VK TiCo 0.93+x Sb -100 TiCoSb 0.95 Bi 0.05 0 −6 −4 −2 0 2 4 6 -200 energy (eV) -300 α : Seebeck coeffizient α 2 σ -400 = σ : Electrical conductivity ZT T -500 λ λ : Thermo conductivity -600 T: Temperatur (K) 0 100 200 300 400 500 600 700 800 Temperature T [K] Kandpal et al. J. Phys. D 39 (2006) 776 Balke et al. PRB 77 , 045209 (2008)

  11. JST-DFG 2009 Thermoelectrica (Zr 0.5 ;Hf 0.5 )Ti 0.5 NiSn 0.998 Sb 0.002 10 TiCo 0.93+x Sb Thermal conductivity κ (T) Resistivity R (T) [ μΩ m] TiCo 0.4 Ni 0.6 Sb 0.4 Sn 0.6 8 1000 (Zr 0.5 Hf 0.5 ) 0.5 TiNiSn 0.998 Sb 0.002 TiCoSb 6 TiNi 0.9 Co 0.1 Sn 0.9 Sb 0.1 -1 ] -1 K TiCo 0.93+x Sb 100 4 [Wm 2 10 0 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 Temperature T [K] Temperature T [K] Improvement of the thermal conductivity 40000 (220) Substrate Substrate 35000 Melt Spinning 30000 Ball milling – Spark Plasma TiNiSn on Al 2 O 3 Int. (cps) 25000 Multilayer 20000 measured data 35000 Lorentz fit 30000 15000 25000 Int. (cps) Nanoparticles 20000 FW HM: ~0.86 15000 10000 10000 Rattlers such as Lithium-Ions 5000 5000 0 19 20 21 22 23 24 ω (°) 0 30 40 50 60 70 80 90 2 θ (°) Barth et al., in preparation (2009)

  12. JST-DFG 2009 First Heusler Nanoparticles: Co 2 FeGa 100 nm 50 nm 10nm 10 nm Basnit et al. J. Phys. D, (2009) accepted

  13. JST-DFG 2009 For Spin Injection XMCD-Investigation on Fe Kroth et al. APL 89 202509 (2006 ) Balke et al. PRB 77 , 045209 (2008)

  14. JST-DFG 2009 Design of Diluted Semiconductors Sb As Mn Si Ti Fe/Mn Ga Co

  15. JST-DFG 2009 • Concept • Semiconducting Half Heusler •Diluted Semiconductors •Thermoelectric materials • Half metallic Heusler compounds •High Curie temperatures •Ferrimagnets • High energy photoemission for Devices • Summary

  16. JST-DFG 2009 Tunneljunction 600 500 400 TMR [%] 300 200 100 0 0 50 100 150 200 250 300 Temperature [K] Co 2 MnSi Al 2 O 3 Co 2 MnSi TMR ratio = 67%@RT, 580%@2K Large temperature dependence of TMR ratio should be solved. et al. APL 89 (2006) 052508 Sakuraba Sakuraba et al. APL 88 (2006) 192508

  17. JST-DFG 2009 Hal f m et al l i c f er r om agnet s - f or Tunnel m agnet or esi st ance TM R - f or CPP G M R W hat do we need? Hi gh Cur i e Tem per at ur e O r der ed L2 1 st r uct ur e G ood i nt er f aces Adj ust ed E F : m i ddl e of t he gap no m agnons Desi gned el ect r oni c st r uct ur e

  18. JST-DFG 2009 High Curie Temperatures Expected Curie temperature for Co 2 : > 1000K FeSi Fecher, J. Appl. Phys. 99 (2006) 08J106 Kübler et al., Phys. Rev. B 76 (2007) 024414

  19. JST-DFG 2009 Co 2 FeSi Hyperfeinfeld (T) Magnetic Moment per unit cell m [ μ B ] 59 Co Spin-Echo Intensity (arb. units) 6 5K 6 8 10 12 14 16 18 20 22 24 26 28 300K 4 775K 2 0 1.0% -2 0.5% 0.0% -4 -0.5% -1.0% -6 -2.0k 0.0 2.0k -3 -2 -1 0 1 2 3 6 A/m] Magnetic Field H [10 120 140 160 180 Frequency (MHz) 60 -1 ] Magnetic moment in saturation: 2 kg σ ( T ) 1/ χ ( T ) 800 5.97 μ B ± 0.1 μ B at 5K Specific Magnetization σ [Am 50 Θ = 1150 ± 50 K T C = 1100 ± 20 K Inverse Susceptibility 1/χ 40 600 Extrapolation to 0K :Slater-Pauling rule: 6 μ B 30 μ 0 H = 0.1T 400 m = 47 μ g Curie Temperature 1120 K 20 T C 200 10 0 0 . 700 800 900 1000 1100 1200 1300 Wurmehl, et al ., APL 88 (2006) 032502 Temperature T [K] Wurmehl, et al ., Phys. Rev. B 72 (2005) 184434

  20. JST-DFG 2009 Heusler in Spintronic Devices: TMR 2 MU28225A470L300-5m223 10 x 10 µm Co 2 FeSi 1-x Al x IrMn 223% 10 CoFe(1) 200 (a) 500 Majority 5 300 K CFAS (5) Resistance ( Ω ) 0 150 TMR ( % ) MgO(2) 400 5 Minority 10 100 CFAS (30) -1 ] 10 300 (b) Spin resolved density of states ρ ( E ) [eV 5 50 0 200 5 0 10 -1000 -500 0 500 1000 10 Field (Oe) (c) 5 TMR: 223%, 300K, A470°C, Rs: 1.74e+02 Ω, RA: 1.74e+04 Ω⋅ µm 2 0 2 MU28-2-25A470L007-2m423 10 x 10 µm 5 10 1000 423% 400 10 (d) 5 7 K 800 300 Resistance ( Ω ) 0 TMR ( % ) 5 600 200 10 10 (e) 5 400 100 0 5 200 0 10 -1000 -500 0 500 1000 -10 -5 0 Field (Oe) Energy E − ε F [eV] 2 TMR: 423.40%, 7K, A470°C, Rs: 1.91e+02 Ω, RA: 1.91e+04 Ω⋅ µm Fecher, Felser J. Phys. D 40 1582 (2007) N. Tezuka et al.,Jpn. J. Appl. Phys. 46 , L454 (2007)

  21. JST-DFG 2009 Heusler in Spintronic Devices: CPP-GMR Courtesy of Koki Takanashi, Sendai CoFeB/MgO ‐ MTJ Half ‐ metal + MgO MTJ CoFeB/MgO ‐ MTJ CPP ‐ GMR with half ‐ metal Challenge: fitting spacer Inomata et al. to be published Interlayer exchange coupling!

  22. JST-DFG 2009 Fer r i m agnet s Appl i cat i on: Spi nt or que Com pensat ed f er r i m agnet ? no net m agnet i zat i on t wo m agnet i c subl at t i ces wi t h com pensat i ng m om ent s W ar r en E. Pi cket t Phys. Rev. B 57 ( 1998) 10613.

  23. JST-DFG 2009 Spin transfer switching Sloczewski 1996 m 1 m 2 J ≈ 100 MA/cm 2 1 – e J ≈ ― α M s H U d ħ g of α reduction & M S Courtesy after Shigemi Mizukami

  24. JST-DFG 2009 Halfmetallic Ferrimagnet Kübler’s Rule Slater Pauling Rule Mn 2 MnGa Two magnetic sublattice 0 μ B •24 Valence electrons – μ B •Mn 3+ at octahedral site – 4 •Mn compensates ⇒ Compensated ferrimagnet Wurmehl, et al. J. Phys. Cond. Mat . 18 (2006) 6171 Balke et al. APL 90 (2007) 152504

  25. JST-DFG 2009 Compensated Ferrimagnet: Heusler Mn 2 MnGa Low Moment – High Curie Temperature: low current for spinswitch Tetragonal distorted Heusler: Mn 3+ Jahn Teller Ion Compensated ferrimagnet: 1 μ B Theoretical Spinpolarisation: 88% Curie temperature: 730 K Balke et al. APL 90 (2007) 152504 Winterlik et al. Phys. Rev. B 77 (2008) 054406

  26. JST-DFG 2009 Heusler and relates Structures X 2 MnZ XMnMnZ XCrCrZ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend