search for the nuclear schiff moment of radium search for
play

Search for the Nuclear Schiff Moment of Radium- Search for the - PowerPoint PPT Presentation

Search for the Nuclear Schiff Moment of Radium- Search for the Nuclear Schiff Moment of Radium -225 225 I. Ahmad, K. Bailey, B. Graner, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. OConnor, I.A. Sulai, W.L. Trimble


  1. Search for the Nuclear Schiff Moment of Radium- Search for the Nuclear Schiff Moment of Radium -225 225 I. Ahmad, K. Bailey, B. Graner, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. O’Connor, I.A. Sulai, W.L. Trimble Physics Division, Argonne National Lab Physics Department, University of Chicago Physics Department, University of Kentucky

  2. Discrete Fundamental Symmetries Discrete Fundamental Symmetries Parity violation – First observation P Parity C Charge conjugation CP CP symmetry 60 Co T Time reversal CPT CPT – Exact symmetry in quantum field theory with Lorentz invariance C. S. Wu et al . (1957)

  3. More CP- More CP -Violation Mechanisms? Violation Mechanisms? Supersymmetry More particles  More CP-violating phases Matter-antimatter asymmetry Require additional CP-violation mechanism(s) Strong CP problem CP-violating phase in Quantum Chromodynamics Fortson, Sandars, Barr, Physics Today (June 2003)

  4. Electric Dipole Moment (EDM) Violates Both P and T Electric Dipole Moment (EDM) Violates Both P and T A permanent EDM violates both time-reversal symmetry and parity + + - T P - - + EDM Spin EDM Spin EDM Spin Neutron Quark EDM Physics beyond the Diamagnetic Atoms Quark Chromo-EDM Standard Model: (Hg, Ra) SUSY, String… Paramagnetic Atoms (Tl) Electron EDM Molecules (PbO)

  5. Measurability of Nuclear EDM Measurability of Nuclear EDM L.I. Schiff, Phys. Rev. (1963) Schiff shielding    d d atom nucleus     0 d d d atom atom nucleus Incomplete cancellation     0 d d d atom atom nucleus 1) nucleus has finite size; 2) charge distribution  EDM distribution. Nuclear Schiff moment is lowest order, P,T-odd, measurable electric Schiff moment (toy model) moment.  r r     c d 5 10 d d d     atom nucleus nucleus 2  5  e r S  2 r p 3 r ch r atom   p   10  2 2 S d r r  p nucleus d c a ‘radially-weighted dipole moment’      1 1 d S r r atom atom c

  6. The Seattle EDM Measurement The Seattle EDM Measurement 199 Hg stable, high Z, J = 0, I = ½, high vapor pressure   2 2 B dE   15 Hz f  E h   2 2 B dE   15 Hz f  h E   0.6 nHz f f   Courtesy of Michael Romalis Unit The best limit on atomic EDM +e EDM EDM ( 199 Hg) < 3 x 10 -29 e-cm cm -e Griffith et al ., Phys Rev Lett (2009)

  7. 225 Ra enhanced EDM of 225 Ra enhanced EDM of EDM of 225 Ra enhanced: • Large intrinsic Schiff moment due to octupole deformation; • Closely spaced parity doublet; • Relativistic atomic structure. Haxton & Henley (1983) Auerbach, Flambaum & Spevak (1996) Parity doublet Engel, Friar & Hayes (2000) |   |   Enhancement Factor: EDM ( 225 Ra) / EDM ( 199 Hg) Skyrme Model Isoscalar Isovector Isotensor SkM* 1500 900 1500      SkO’ 450 240 600 55 keV Schiff moment of 199 Hg, de Jesus & Engel, PRC72 (2005)     Schiff moment of 225 Ra, Dobaczewski & Engel, PRL94 (2005)

  8. 225 Ra Search for Electric Dipole Moment of 225 Ra Search for Electric Dipole Moment of Advantages of an EDM measurement on 225 Ra atoms in a trap • EDM enhanced by ~ 10 2 -10 3 due to nuclear octupole deformation. • Trap allows the efficient use of the rare and radioactive 225 Ra atoms. • Long coherence time (~ 100 s), negligible “v x E” systematics, high electric field (100 kV/cm). 10 mCi Magneto-Optical 225 Ra sample Trap Proposed setup Atomic Beam 225 Ra Nuclear Spin = ½ Oven Electronic Spin = 0 t 1/2 = 15 days Transverse Cooling EDM-probing region • Our sensitivity goal: 1 x 10 -28 e-cm. • | d( 199 Hg) | < 3 x 10 -29 e-cm (95% C.L.) Griffith et al., PRL (2009) • Ra / Hg Enhancement factor ~ 10 2 -10 3 Optical Dipole Trap

  9. 225 Ra Source 225 Ra Source     229 Th 225 Ra 225 Ac 209 Bi Fr, At, Rn… 7300 yr 15 days 10 days ~ 4 hours stable • 2 mCi (or 60 ng) 225 Ra sources available from Oak Ridge National Lab • Test source: 300 nCi 226 Ra (1600 yr) -- invaluable for testing • Ra(NO 3 ) 2 reduced by Ba metal and Al in 700 C oven Rare Isotope Facility Rare Isotope Facility Yield for 225 Ra ~ 10 10 s -1 - 10 12 s -1 ?

  10. 6 ns Radium Atom Energy Level Diagram Radium Atom Energy Level Diagram  7p 1 P 1 V. Dzuba, V. Flambaum et al. , PRA 61 (2000) 1e-1 1429 nm, repump, diode laser 0.4 ms 6d 1 D 2 • Linewidth ~ 400 kHz 2e-6 • Cooling 7  K, 14 mm/s 6  s 5e-2 • B gradient ~ 1 G / cm  7p 3 P 2 483 nm 5e-4 6d 3 D 3 5e-2 2e-2 420 ns 7e-10 2e-2 70  7p 3 P 1 714 nm, cycling, Ti:S ring laser 6d 3 D 2 4e-5 2e-3 1 0.7 ms 6e-4 6d 3 D 1  7p 3 P 0 * Without repump, 1.7  10 4 cycles. * With repump at 1428 nm, 1.7  10 7 cycles. 7s 2 1 S 0

  11. 225 Ra and 226 Ra Atoms Laser- -Trapping of Trapping of 225 Ra and 226 Ra Atoms Laser 1 P 1 Repump • Key 225 Ra frequencies, lifetimes measured 3 P 1 Scielzo et al. PRA (2006) • 225 Ra laser cooled and trapped! 3 D 1 Guest et al. PRL (2007) Laser-cooling Ra atom trap! Ra fluorescence signal 1 S 0 100x Ra atomic beam 0 -4 -3 -2 -1 0 1 2 3 4 Probe frequency shift (MHz)

  12. 3/2 -> 3/2 226 Ra and 225 Ra 226 Ra and 225 Ra Hyperfine constants and Hyperfine constants and 3 D 1 P isotope shift on 3 D 1 - 1 P 1 isotope shift on 1 - 1 Ra-226 Ra-225 F 540(4) MHz 1 P 1 3/2 1/2 4196(2) MHz ISOLDE: 4195(4) MHz* 6999.83 cm -1 3/2 1/2 -> 3/2 3 D 1 3/2 -> 1/2 1/2 -> 1/2 1/2 7031(2) MHz *Ahmad et al., Phys. Lett. 133B , 47 (1983) Guest et al . PRL (2007)

  13. 1 P 1 Radium Atom Repump Dynamics Radium Atom Repump Dynamics 2000 Blackbody spectrum @ 298K 1429nm 482nm Repumping (k B T/hc) = 210cm -1 ) to 1 P 1 cm -1 3 P 1 3.4 E1 9.9 E1 3.4 E1 3 D 1 0.6 ms Laser-cooling 7.4 E1 1.5 E3 2.2 E2 3 P 0 0 N(  ) 298 K thermal transition rates A ij B ji  g i B ij  (  ij , T )  e E / k B T  1, B ij g j 1 S 0

  14. Oven: 225 Ra EDM measurement on 225 Ra EDM measurement on 225 Ra Transverse cooling Zeeman Slower Magneto-optical trap Statistical uncertainty: 10 days 100 kV/cm Optical 10% 10 s 10 4 dipole trap EDM measurement  d = 3  10 -26 e cm Ra / Hg Enhancement factor ~ 10 2 -10 3 Best experimental limit: d( 199 Hg) < 3  10 -29 e cm

  15. Oven: 225 Ra EDM measurement on 225 Ra EDM measurement on 225 Ra Transverse cooling Zeeman Slower Magneto-optical trap Statistical uncertainty: 10 days 100 days 100 kV/cm Optical 10% 100 s 10 s 10 6 10 4 dipole trap EDM measurement  d = 3   d = 3  10 -26 e cm 10 -28 e cm Ra / Hg Enhancement factor ~ 10 2 -10 3 Best experimental limit: d( 199 Hg) < 3  10 -29 e cm

  16. B- -Field: Shields, Coils, Magnetometers Field: Shields, Coils, Magnetometers B Design Goal B = 10 mG Stability: < 1 ppm in 100 sec Uniformity: < 1% / cm  -shields: Shielding factor = 2 x 10 4 Rb cell magnetometer: Budker design B gradient < 10 μ G/cm

  17. E- E -Field: 100 kV / cm Field: 100 kV / cm -- -- Done. Done. • 20 kV over 2mm vacuum gap • < 50 pA leakage currents observed

  18. Optical Dipole Trap Optical Dipole Trap 1       2 H dE E 0 4 Polarizabilities at 1550 nm • Fiber laser: -- calculated by V. Dzuba  = 1.55  m, Power = 8 W  s = 270 a.u. (+/- 1 S 0 : 5%) • Focused to 100  m diameter  s = 271 a.u. (+/- 3 P 1 : 5%)  120  K trap depth  t = 28 a.u. • Raman excitation rate ~ 10 -5 s -1

  19. Nuclear EDM Searches Nuclear EDM Searches Isotope Current Limit Institution Technique (e cm) Neutron < 2.9E-26 SNS Superfluid He Grenoble Grenoble 199 Hg < 3E-29 Washington 4 cells Washington (0.7  129 Xe Princeton Liquid cell 3.3)E-27 Michigan 225 Ra N/A Argonne Trap KVI 223 Rn N/A Michigan & Cell TRIUMF 2 H N/A Brookhaven Storage ring

  20. T + + - - EDM EDM Spin Spin He Ra  e Kr He  -  6 He 6 Li + Supported by DOE, Office of Nuclear Physics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend