modeling of thermal properties of peat soil
play

Modeling of thermal properties of peat soil Dyukarev E.A. Institute of monitoring of climatic and ecological systems SB RAS, Tomsk n Peat deposit is a complex organic-mineral system with specific properties. Peat layers has high porosity,

0 downloads 3 Views 3,54 MB Size Report
  1. Modeling of thermal properties of peat soil Dyukarev E.A. Institute of monitoring of climatic and ecological systems SB RAS, Tomsk

  2. n Peat deposit is a complex organic-mineral system with specific properties. Peat layers has high porosity, and contains large amount of weakly decomposed water saturated organic matter. Thermal regimes of peat deposit and mineral soil are essentially differs. Temperature of peat influences on course and rate of physical, chemical, and microbiological processes in the peat deposit. Studying of temperature regime allows to reveal features of heat, water and gas regimes of peatland ecosystems. 2

  3. Study area Bakcharskoe bog Tomsk 3

  4. Pine-shrub-sphagnum community (Low ryam) 4

  5. Observation data 2 5 10 15 25 Water table Soil temperature at - 20 cm 2,5,10,15,25,40,60,80 cm 40 from 28 june 2005 60 to 7 september 2010 Time step: 80 15 min (summer) 60 min (winter) 5 Peat depth – 2 m

  6. Daily air temperature (Ta), soil temperature at 2 – 80 cm (T2, T5, T10, T15, T25, T40, T60, T80), snow depth (SDP, cm), soil freeze depth (FD, cm), water table level (WTL, см ) and daily precipitation (PRC, mm). S D P P R C 6 4 0 S D P P R C 3 0 0 0 F D 2 0 W T L W T L F D , ¡ 2 0 4 0 T a 6 0 0 T a -­‑2 0 1 0 T 2 T 2 1 0 0 T 5 T 5 0 1 0 T 10 1 0 T 10 T 15 0 T 15 0 5 T 25 T 25 5 0 T 40 T 40 0 5 T 60 T 60 5 0 T 80 T 80 0 01/05/05 01/09/05 01/01/06 01/05/06 01/09/06 01/01/07 01/05/07 01/09/07 01/01/08 01/05/08 01/09/08 01/01/09 01/05/09 01/09/09 6

  7. Data examples 7

  8. Annual course of soil temperature 25 ⎯ 2 tempertaure, о С ⎯ ⎯ 5 ⎯ ⎯ 10 20 ⎯ ⎯ 15 ⎯ ⎯ 25 ⎯ 15 ⎯ 40 ⎯ ⎯ 60 ⎯ ⎯ 80 ⎯ 10 5 0 7.3315 7.332 7.3325 7.333 7.3335 7.334 7.3345 7.335 time 5 x 10 8

  9. Diurnal temperature variations ⎯ 2 ⎯ ⎯ 5 ⎯ 26 ⎯ 10 ⎯ ⎯ 15 ⎯ temperature, о С 24 ⎯ 25 ⎯ ⎯ 40 22 ⎯ ⎯ 60 ⎯ 20 ⎯ 80 ⎯ 18 16 14 12 10 8 7.3323 7.3324 7.3324 7.3324 7.3324 7.3324 7.3324 time 5 x 10 9

  10. Peat warming at water infiltration 24 temperature, о С 22 20 18 16 ⎯ 2 ⎯ ⎯ 5 14 ⎯ ⎯ 10 ⎯ 12 ⎯ 15 ⎯ ⎯ 25 ⎯ 10 ⎯ 40 ⎯ ⎯ 60 8 ⎯ ⎯ 80 ⎯ 6 7.3252 7.3252 7.3252 7.3252 7.3253 7.3253 7.3253 7.3253 7.3253 time 5 10 x 10

  11. Data pre-processing 11

  12. In-situ data calibration using “zero curtain” 4.5 ⎯ 2 ⎯ 4 ⎯ 5 ⎯ ⎯ 10 ⎯ 3.5 ⎯ 15 ⎯ ⎯ 25 3 ⎯ ⎯ 40 ⎯ 2.5 ⎯ 60 ⎯ ⎯ 80 ⎯ 2 1.5 1 0.5 0 -0.5 7.3388 7.3388 7.3388 7.3388 7.3388 7.3388 7.3388 7.3388 7.3388 7.3389 5 12 x 10

  13. Removing data quantification – observation temperature, о С 6.25 – smoothing 6.24 6.23 6.22 dT = 0.01 о С 6.21 6.2 6.19 T (80 cm) 6.18 1.2175 1.218 1.2185 1.219 1.2195 1.22 1.2205 13 5 x 10

  14. Soil thermal properties a - apparent heat diffusivity T T ∂ ∂ ∂ ⎛ ⎞ ( ) a z = ⎜ ⎟ t z z ∂ ∂ ∂ ⎝ ⎠ 14

  15. Methods of determination of soil thermal properties n Experimental methods – Field – Laboratory n Computation using soil mechanical properties and composition n Computation using temperature data – Amplitude method – Phase method – Direct numerical method – Inverse problem

  16. Amplitude method of apparent heat diffusivity calculation 2 T T ∂ ∂ a = 2 t z ∂ ∂ ( ) T ( 0 , t ) T A sin t = + ω 0 0 ⎛− ⎞ ⎛ ⎞ ω ω T ( z , t ) T A exp z sin t z ⎜ ⎟ ⎜ ⎟ = + ω − 0 0 ⎜ ⎟ ⎜ ⎟ 2 a 2 a ⎝ ⎠ ⎝ ⎠ 2 z z ⎛ ⎞ ω − a 1 2 ⎜ ⎟ = ⎜ ⎟ ( ) 2 ln A / A ⎝ ⎠ 1 2

  17. Monthly soil temperature. 2005-2010 averaged. temperature, о С Т почвы , о С 17

  18. Heat diffusivity, cm 2 /day. Amplitude method. Annual oscillation. 10000 1000 100 1893 505 259 128 122 112 10 20 1 2-5 5-10 10-15 15-25 25-40 40-60 60-80 18 layer

  19. Monthly amplitudes of diurnal temperature, 2005-2010 averaged. Temperatude amplitude, о С 19

  20. Heat diffusivity, cm 2 /day. Amplitude method. Daily oscillation. 300 250 200 a, ¡ см2/сут 150 205 100 165 144 50 0 2-­‑5 5-­‑10 10-­‑15 20 layer

  21. Heat diffusivity, cm 2 /day. Annual and daily oscillations. 10000 Суточная амплитуда 1000 Годовая амплитуда 100 205 165 144 10 1893 128 112 122 259 505 20 1 2-5 5-10 10-15 15-25 25-40 40-60 60-80 21 слой

  22. Numerical methods 22

  23. Numerical soluton of heat equation T T ∂ ∂ ∂ ⎛ ⎞ ( ) a z = ⎜ ⎟ t z z ∂ ∂ ∂ ⎝ ⎠ t+ τ n Semi-explicit scheme n Boundary condition of 1 type n 8 layers a (i) a (i+1) t z-h z z+h 23

  24. Model data - regular oscillations. Direct solution. a = const = 200 cm 2 /day T0 = 15 + 7,5 sin (2 π t) temperature, о С 22 20 18 16 14 12 10 8 6 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 time 24

  25. Inverse problem n Initial condition - а 0(z) n Model spin-up - 3 days n Minimization of function M N 1 1 1 − ( ) 2 0 J ( a ) T T ∑∑ = − ij ij N 2 M m − − j m i 2 = = n Iterations for accurate definition a(z)

  26. Inverse problem (a=200) Temperature Heat 22 diffusivity 20 18 16 error 14 12 10 8 6 -­‑0,15 -­‑0,1 -­‑0,05 0 0,05 1300 1350 1400 1450 1500 0 -6 1E-6 10 x 10 Depth, cm 8 6 20 4 0,02 2 30 0 -2 -4 40 -6 1300 1350 1400 1450 1500 50 Error of temperature 60 -0,11 dT = T(modeled) – T(measured) 70 80 26

  27. 300 Two layers: а 1 = 300, а 2 =100) 100 Heat Temperature diffusivity 20 error 15 10 400 420 440 460 480 500 520 540 560 580 600 1E-5 Depth, cm -5 x 10 0,35 3 2 1 0 -1,37 -1 400 420 440 460 480 500 520 540 560 580 600 Error of temperature 27 dT = T(modeled) – T(measured)

  28. Real data – soil temperature august 2009 Heat Temperature diffusivity 22 error 20 18 16 0 100 200 300 400 500 14 0 12 207 10 8 10 6 4 Depth, cm 2 20 0 100 200 300 400 500 600 1,0 30 397 1 40 0.5 50 0 -0.5 60 -1 70 70 -1.5 0 100 200 300 400 500 600 Error of temperature 28 80 dT = T(modeled) – T(measured)

  29. Heat diffusivity, cm 2 /day. Methods comparison. 600 Суточная амплитуда 500 Годовая амплитуда Численное решение 400 300 397 200 341 261 207 205 100 165 144 1893 94 128 112 122 259 505 70 70 20 0 2-5 5-10 10-15 15-25 25-40 40-60 60-80 layer

  30. Tasks n Winter period n Evaporation, freezing, melting n Heat conduction at water infiltration 30

  31. Спасибо за внимание ! Foto: S.V. Smirnov 31

Recommend Documents


farming on organic peat soil
Farming on organic (peat) soil Lea

Farming on organic (peat) soil Lea Appulo Policy and advocacy Officer on

soil modificator arid grow and fertilizers on the peat
SOIL MODIFICATOR ARID GROW AND

SOIL MODIFICATOR ARID GROW AND FERTILIZERS ON THE PEAT BASIS 1 A RUSSIAN

responsible peat
Responsible Peat Sustainable growing

Responsible Peat Sustainable growing media September 2011 RHP - Hein Boon

phonons ii thermal properties kittel ch 5
Phonons II - Thermal Properties

Phonons II - Thermal Properties (Kittel Ch. 5) Heat Capacity C Approaches

decomposition
DECOMPOSITION and Aerobic Thermal

DECOMPOSITION and Aerobic Thermal Composting By: Molly Haviland for Living

web course web course physical properties of glass
Web Course Web Course Physical

Web Course Web Course Physical Properties of Glass Physical Properties of

web course web course physical properties of glass
Web Course Web Course Physical

Web Course Web Course Physical Properties of Glass Physical Properties of

thermal properties of novel thermal barrier coatings tbcs
Thermal Properties of Novel Thermal

UCSB - Materials for Cleaner Engines Thermal Properties of Novel Thermal

sub topics
Sub-topics Thermal Characterization

Sub-topics Thermal Characterization Influence of Various Parameters

review of peat emission factor used for the renewable
Review of Peat Emission Factor used for

6/11/2012 Review of Peat Emission Factor used for the Renewable Fuel Standard

outline simulated impacts of global warming on building
Outline Simulated Impacts of Global

ESL-TR-07-06-01 Outline Simulated Impacts of Global Warming on Building

trading pla latform uae
Trading Pla latform (UAE) Sep

Executive Summary ry MID IDGARD Oil il Hub LLC FZC Trading Pla latform

tank farm waste oil il refin inery proje ject
Tank Farm & Waste Oil il Refin

Executive Summary ry Mid idgard Oil il & Gas LLC FZC Tank Farm &

odot design updates from ohio epa s updated cgp
ODOT Design Updates from Ohio EPAs

ODOT Design Updates from Ohio EPAs Updated CGP w w w. t r a n s p o r t a t

public construction activities and public construction
Public Construction Activities and

Public Construction Activities and Public Construction Activities and Long

the significance of performance measures
The Significance of Performance

The Significance of Performance Measures February 25 th , 2015 Purpose

development of emission factors for ghgs and associated
Development of Emission Factors for

Development of Emission Factors for GHGs and Associated Uncertainties Dr.

e3t e3t
E3T E3T E nergy E fficiency E merging

ComTAG Agenda April 29, 2014 Present scoring results Discussion, comments

variability of the boundary layer depth over certain
Variability of the Boundary Layer

Variability of the Boundary Layer Depth over Certain Regions of the

impact of meteorological impact of meteorological a
Impact of Meteorological Impact of

Impact of Meteorological Impact of Meteorological A Anomalies on Forest

air ir pollu llution from soli lid fuel l
Air ir pollu llution from soli lid

Air ir pollu llution from soli lid fuel l combustion - im implic

gakuji kurata
Gakuji KURATA Kyoto University 1 2

18 th AIM International Workshop 14 th 16 th December, 2012 NIES, Tsukuba,