minicourse 3 limiting distributions in combinatorics
play

Minicourse 3: Limiting Distributions in Combinatorics Michael - PowerPoint PPT Presentation

Minicourse 3: Limiting Distributions in Combinatorics Michael Drmota Institute of Discrete Mathematics and Geometry Vienna University of Technology A 1040 Wien, Austria michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ International


  1. Minicourse 3: Limiting Distributions in Combinatorics Michael Drmota Institute of Discrete Mathematics and Geometry Vienna University of Technology A 1040 Wien, Austria michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ International Conference on Analysis of Algorithms Maresias, Brazil, April 12–18, 2008

  2. Contents • Sums of independent random variables and powers of generating functions • A central limit theorem • Bivariate generating functions • Functions equations • Non-normal limit laws • Method of moments • Admissible functions and central limit theorems

  3. Standard Reference Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics , Cambridge University Press, to appear 2008. (http://algo.inria.fr/flajolet/Publications/books.html) + special reference for last part: M. Drmota, B. Gittenberger and T. Klausner, Extended admissible functions and Gaussian limiting distributions, Math. Comput. 74 (2005), 1953–1966.

  4. Sums of independent random variables and powers of generating functions Coin tossing • P { ct = head } = P { ct = tail } = 1 2 . � 1 if tail • random variable ξ = I { ct =tail } = 0 if head • n independent runs: ξ 1 , ξ 2 , . . . , ξ n , P { ξ j = 1 } = P { ξ j = 0 } = 1 2 . • X n = ξ 1 + ξ 2 + · · · + ξ n ... the number of tails within n runs � n � k P { X n = k } = 2 n

  5. Sums of independent random variables and powers of generating functions Counting generating function a n = 2 n ... total number of possible n -runs � n � a n,k = ... the number of n -runs with k tails k � n a n,k u k = u k = (1 + u ) n ... counting gen. func. � � � A n ( u ) = k k ≥ 0 k ≥ 0 a n,k = a n = (1 + 1) n = 2 n � A n (1) = k ≥ 0

  6. Sums of independent random variables and powers of generating functions Probability generating function E u X n = P { X n = k } · u k � k ≥ 0 1 � n � · u k � = 2 n k k ≥ 0 = (1 + u ) n = A n ( u ) 2 n A n (1) P { X n = k } = a n,k E u X n = A n ( u ) ⇒ = a n A n (1)

  7. Sums of independent random variables and powers of generating functions Powers of probability generating functions E u ξ = 1 2 + 1 2 u = 1 + u 2 E u X n = E u ξ 1 + ··· + ξ n ⇒ = � u ξ 1 · · · u ξ n � = E � u ξ 1 � � u ξ n � · · · E = E ξ j independent !!! � n � 1 + u = 2

  8. Sums of independent random variables and powers of generating functions General fact X n = ξ 1 + ξ 2 + · · · + ξ n , where the r.v.’s ξ j are iid ∗ � n E u X n = � E u ξ 1 ⇒ = ∗ Notation. “iid” ... independently and identically distributed

  9. Sums of independent random variables and powers of generating functions Relation to moment generating function m Z ( v ) = E e vZ E ( Z r ) ... r -th moment of Z   E ( Z r ) v r Z r v r  = E e vZ = E u Z with u = e v . �  � r ! = E ⇒ = r ! r ≥ 0 r ≥ 0

  10. A central limit theorem Binomial coefficients − ( k − n 2 ) 2 2 n � � � n n ! � + O (2 n /n ) = k !( n − k )! = exp � k n/ 2 πn/ 2

  11. A central limit theorem Standard normal distribution 1 2 πe − 1 2 t 2 . √ density: f ( t ) = � x 2 t 2 dt 1 −∞ e − 1 √ normal distribution function: Φ( x ) = 2 π

  12. A central limit theorem Normally distributed random variable Definition A random variable Z has standard nomal distribution N (0 , 1) if P { Z ≤ x } = Φ( x ) . A random variable Z is normally distributed (or Gaussian ) with mean µ and variance σ 2 if its distribution function is given by � x − µ � P { Z ≤ x } = Φ , σ L ( Z ) = N ( µ, σ 2 ) . Notation.

  13. A central limit theorem Moment generating function of N ( µ, σ 2 ): 2 σ 2 v 2 . m Z ( v ) = E e vZ = e µv − 1 Characteristic function of N ( µ, σ 2 ): 2 σ 2 t 2 . ϕ Z ( t ) = E e itZ = e iµt − 1 Standard normal distribution : µ = 0, σ 2 = 1 2 v 2 , 1 E e itZ = e − 1 2 t 2 E e vZ = e

  14. A central limit theorem Definition We say, that a sequence of random variables X n satisfies a central limit theorem with (scaling) mean µ n and (scaling) variance σ 2 n if P { X n ≤ µ n + x · σ n } = Φ( x ) + o (1) as n → ∞ . Example. X n = number of tails in n runs of coin tossing: 1 � n � � � P { X n ≤ n/ 2 + x · n/ 4 } = 2 n k ≤ n/ 2+ x · √ k n/ 4 − ( k − n 2 ) 2 � � 1 � ∼ ∼ Φ( x ) . exp k ≤ n/ 2+ x · √ � n/ 2 πn/ 2 n/ 4 X n satisfies a central limit theorem with mean n 2 and variance n 4 .

  15. Central Limit Theorem Definition Weak convergence: d X n − → X : ⇐ ⇒ n →∞ P { X n ≤ x } = P { X ≤ x } lim for all points of continuity of F X ( x ) = P { X ≤ x } Reformulation: X n satisfies a central limit theorem with (scaling) mean µ n and (scaling) variance σ 2 n is the same as X n − µ n d − → N (0 , 1) . σ n

  16. A central limit theorem Weak convergence via moment generating functions d n →∞ E e vX n = E e vX lim ( v ∈ R ) X n − → X ⇒ = Moreover, we have convergence of all moments: E ( X r n ) → E ( X r ). Recall: E e vX n = E (( e v ) X n ) = E u X n for u = e v .

  17. A central limit theorem Weak convergence via characteristic functions (Levy’s Criterion) d n →∞ E e itX n = E e itX lim ( t ∈ R ) ⇐ ⇒ X n − → X Moreover, if for all t ∈ R n →∞ E e itX n ψ ( t ) := lim exists and ψ ( t ) is continous at t = 0 then ψ ( t ) is the characteristic d − → X . function of a random variable X for which we have X n

  18. Central Limit Theorem Theorem ξ 1 , ξ 2 , . . . iid, E ξ 2 i < ∞ , X n = ξ 1 + ξ 2 + . . . + ξ n X n − E X n d √ V X n − → N (0 , 1) ⇒ = ⇒ P { X n ≤ E X n + x √ V X n } = Φ( x ) + o (1). Remark . ⇐ Proof µ = E ξ i , σ 2 = V ξ i = E ( ξ 2 i ) − ( E ξ i ) 2 ⇒ E X n = nµ , V X n = nσ 2 . =

  19. Central Limit Theorem 2 σ 2 t 2 (1+ o (1)) ϕ ξ i ( t ) = E e itξ i = e itµ − 1 ( t → 0) ϕ X n ( t ) = ϕ ξ i ( t ) n � σ 2 n Z n := ( X n − µn ) / ⇒ ϕ Z n ( t ) = E e itZ n = = e − it √ nµ/σ · E e ( it/ ( √ nσ ))( ξ 1 + ··· + ξ n ) � � = e − it √ nµ/σ · E e ( it/ ( √ nσ ) ξ 1 � n � = e − it √ nµ/σ · e it √ nµ/σ − 1 2 t 2 (1+ o (1)) 2 t 2 . 2 t 2 (1+ o (1)) → e − 1 = e − 1 + Levy’s criterion.

  20. A central limit theorem Quasi-Power Theorem (Hwang) Let X n be a sequence of random variables with the property that � � �� 1 E u X n = A ( u ) · B ( u ) λ n · 1 + O φ n holds uniformly in a complex neighborhood of u = 1, λ n → ∞ and φ n → ∞ , and A ( u ) and B ( u ) are analytic functions in a neighborhood of u = 1 with A (1) = B (1) = 1. Set σ 2 = B ′′ (1) + B ′ (1) − B ′ (1) 2 . µ = B ′ (1) and V X n = σ 2 λ n + O (1 + λ n /φ n ) , E X n = µλ n + O (1 + λ n /φ n ) , ⇒ = X n − E X n d ( σ 2 � = 0) . √ V X n − → N (0 , 1)

  21. Bivariate generating functions Bivariate counting generating function 1 � n u k x n = (1 + u ) n x n = � � � A ( x, u ) = 1 − x (1 + u ) . k n ≥ 0 n,k ≥ 0 Observation: this is a rational function !

  22. Bivariate generating functions Rational functions P ( x, u ) , Q ( x, u ) polynomials: a n,k u k x n = P ( x, u ) � A ( x, u ) = Q ( x, u ) n,k ≥ 0 Assumption: factorization of denominator r � � x � Q ( x, u ) = 1 − ρ j ( u ) j =1 with | ρ 1 ( u ) | < max 2 ≤ j ≤ r | ρ j ( u ) | for | u − 1 | < ε.

  23. Bivariate generating functions Central limit theorem for rational functions Suppose that A ( x, u ) = � a n,k u k x n with a n,k ≥ 0 is rational and satis- fies the assumptions from above. Let X n be a sequence of random variables with P { X n = k } = a n,k a n with a n = � k a n,k . Then X n satisfies a central limit theorem with µ n = − nρ ′ − ρ ′′ ρ 1 (1) − ρ ′ ρ 1 (1) + ρ ′ 1 (1) 2 � � 1 (1) 1 (1) 1 (1) σ 2 and n = n . ρ 1 (1) 2 ρ 1 (1)

  24. Bivariate generating functions Proof Partial fraction decomposition: C 1 ( u ) C r ( u ) A ( x, u ) = 1 − x/ρ 1 ( u ) + · · · + 1 − x/ρ r ( u ) a n,k u k = C 1 ( u ) ρ 1 ( u ) − n + · · · + C r ( u ) ρ r ( u ) − n ∼ C 1 ( u ) ρ 1 ( u ) − n � A n ( u ) = ⇒ = k ≥ 0 � n � E u X n = A n ( u ) A n (1) ∼ C 1 ( u ) ρ 1 (1) ⇒ = C 1 (1) ρ 1 ( u ) ⇒ central limit theorem . =

  25. Bivariate generating functions Integer compositions 3 = 1 + 1 + 1 = 2 + 1 = 1 + 2 = 3 ... 4 compositions of 3. a n = number of compositions of n , A ( x ) = � a n x n : x A ( x ) = 1 + A ( x )( x + x 2 + x 3 + · · · ) = 1 + A ( x ) 1 − x . = 1 − x 1 A ( x ) = ⇒ = x 1 − 1 − 2 x 1 − x a n = 2 n − 1 ⇒ =

  26. Bivariate generating functions Integer compositions a n,k = number of integer composition of n with k summands A ( x, u ) = � a n,k u k x n : A ( x, u ) = 1 + uA ( x, u )( x + x 2 + x 3 + · · · ) = 1 + A ( x, u ) xu 1 − x . 1 1 − x A ( x, u ) = = ⇒ = 1 − xu 1 − x (1 + u ) 1 − x 2 and σ 2 = n ⇒ central limit theorem with µ n = n 4 . =

  27. Bivariate generating functions Systems of linear equations Suppose, that several generating functions a 1; n,k u k x n , . . . , A r ( x, u ) = a r ; n,k u k x n � � A 1 ( x, u ) = n,k n,k satisfy a linear system of equations . Then all generating functions A j ( x, u ) are rational and a central limit theorem for corresponding random variables is expected .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend