asymptotic distribution of nodal intersections for
play

Asymptotic Distribution of Nodal Intersections for Arithmetic - PowerPoint PPT Presentation

Asymptotic Distribution of Nodal Intersections for Arithmetic Random Waves Maurizia Rossi Universit e Paris Descartes Random Waves in Oxford June 18-22, 2018 M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford June 21, 2018


  1. Asymptotic Distribution of Nodal Intersections for Arithmetic Random Waves Maurizia Rossi Universit´ e Paris Descartes Random Waves in Oxford June 18-22, 2018 M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 1 / 30

  2. This talk is based on a joint work with Igor Wigman King’s College London M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 2 / 30

  3. outline Nodal Intersections: Deterministic Results 1 Arithmetic Random Waves 2 Nodal Intersections: Mean and Variance 3 Nodal Intersections: Asymptotic Distribution 4 Chaotic expansions Limit Theorems Some Details: Approximate Kac-Rice Formula 5 M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 3 / 30

  4. toral eigenfunctions T := R 2 / Z 2 Standard flat torus Helmholtz equation ∆ f + Ef = 0 , E > 0 n = λ 12 + λ 22 E n = 4 π 2 n, Eigenvalues ∃ λ 1 , λ 2 ∈ Z Λ n = { λ = ( λ 1 , λ 2 ) ∈ Z 2 : λ 2 1 + λ 2 Set of frequencies 2 = n } #Λ n =: N n cardinality of the set of frequencies e λ ( x ) := e i 2 π � λ,x � , O.b. of eigenfunctions λ ∈ Λ n x ∈ T � 1 f ( x ) := √N n a λ e λ ( x ) , x ∈ T λ ∈ Λ n { a λ } λ ∈ Λ n ⊂ C such that a λ = a − λ . M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 4 / 30

  5. nodal intersections / deterministic setting Nodal intersections f − 1 (0) ∩ C Smooth curve C ⊂ T Theorem [Bourgain-Rudnick, 2012] Let C ⊂ T be real analytic with nowhere zero curvature, then � √ n � 1 − o (1) ≪ # f − 1 (0) ∩ C ≪ √ n. Conjecture [Bourgain-Rudnick, 2012] If C ⊂ T is smooth with nowhere zero curvature, then # f − 1 (0) ∩ C ≫ √ n. Theorem [Bourgain-Rudnick, 2015] Let C ⊂ T be smooth with nowhere zero curvature, then for “most” n # f − 1 (0) ∩ C ≫ √ n. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 5 / 30

  6. arithmetic random waves [Oravecz-Rudnick-Wigman, 2008] n sum of two squares � 1 √N n x ∈ T T n ( x ) := a λ e λ ( x ) , λ ∈ Λ n { a λ } λ ∈ Λ n i.d. complex-Gaussian, independent save for a λ = a − λ E [ | a λ | 2 ] = 1 E [ a λ ] = 0 ⇒ T n centered Gaussian r.f. whose cov. kernel is � Cov ( T n ( x ) , T n ( y )) = 1 cos(2 π � λ, x − y � ) =: r n ( x − y ) , x, y ∈ T N n λ ∈ Λ n ⇒ T n is stationary. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 6 / 30

  7. nodal intersections / random setting T − 1 Nodal line n (0) = { x ∈ T : T n ( x ) = 0 } a.s. smooth curve Smooth curve with nowhere zero curvature C ⊂ T Z n := # T − 1 n (0) ∩ C Nodal intersections number M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 7 / 30

  8. mean and variance Theorem [Rudnick-Wigman, 2016] Curve C ⊂ T : smooth, with nowhere zero curvature and length L . √ E n E [ Z n ] = √ 2 L. π For { n } s.t. N n → + ∞ � � Var( Z n ) = (4 B C (Λ n ) − L 2 ) n n + O , N n N 3 / 2 n where � L � L � λ � 2 � λ � 2 � 1 B C (Λ n ) := | λ | , ˙ γ ( t 1 ) | λ | , ˙ γ ( t 2 ) dt 1 dt 2 N n 0 0 λ ∈ Λ n and γ : [0 , L ] − →C is a unit speed parameterization. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 8 / 30

  9. Probability measure on S 1 induced by Λ n � µ n = 1 δ λ N n √ n λ ∈ Λ n invariant w.r.t. rotations by π/ 2 . • ∃ density-1 sequence { n j } j ⊂ { n } s.t. µ n j ⇒ dθ/ 2 π. • [Cilleruelo, 1993] There exists a thin sequence { n j } j ⊂ { n } s.t. µ n j ⇒ 1 4 ( δ ± 1 + δ ± i ) . • ∃ other weak-* partial limits of { µ n } n , partially classified by [Kurlberg-Wigman, 2016]. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 9 / 30

  10. on the variance �� L � 2 � 4 B C (Λ n ) − L 2 = 4 γ ( t ) � 2 dt dµ n ( θ ) − L 2 . � θ, ˙ S 1 0 (i) 0 ≤ 4 B C (Λ n ) − L 2 ≤ L 2 ; (ii) No (unique) limit as n → + ∞ ; (iii) 4 B C (Λ n ) − L 2 can vanish: (1) 4 B C ( µ ) − L 2 = 0 , ∀ prob. measure µ on S 1 invariant w.r.t. rotations by π/ 2 (universally); � � − L 2 → 0 , for some { n j } j ⊂ { n } . (2) 4 B C Λ n j M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 10 / 30

  11. integral representation γ : [0 , L ] − →C unit speed parameterization f n ( t ) := T n ( γ ( t )) , t ∈ [0 , L ] Nodal intersections number Z n = number of zeroes of f n in [0 , L ] � L δ 0 ( f n ( t )) | f ′ Z n = n ( t ) | dt, (1) 0 where f ′ n ( t ) = �∇ T n ( γ ( t )) , ˙ γ ( t ) � . f n ( t ) and f ′ n ( t ) are independent for fixed t � � Var( f ′ n ( t ) := f ′ n ( t )) = E n / 2 ⇒ f ′ n ( t ) / E n / 2 � � L E n δ 0 ( f n ( t )) | � f ′ We rewrite (1) as Z n = n ( t ) | dt. 2 0 M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 11 / 30

  12. nodal intersections and wiener chaos Z n is an explicit L 2 ( P ) -functional of the Gaussian process f n + ∞ � L 2 ( P ) = C q q =0 C q , q = 0 , 1 , 2 , . . . are Wiener chaoses. For q � = q ′ , C q ⊥ C q ′ . (Normalized Hermite polynomials { H k } k ≥ 0 form an orthonormal basis for the space of L 2 -functions on R w.r.t. the Gaussian density.) • Wiener-Itˆ o chaos expansion + ∞ + ∞ � � ( i ) Z n = Z n [ q ] = E [ Z n ] + Z n [ q ] q =0 q =1 1) the series in ( i ) converges in L 2 ( P ) ; 2) Z n [ q ] = proj ( Z n | C q ) orthogonal proj. onto C q ; 3) if q � = q ′ , then Z n [ q ] and Z n [ q ′ ] are uncorrelated. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 12 / 30

  13. chaotic expansions Lemma Wiener-Itˆ o expansion � � L E n δ 0 ( f n ( t )) | � f ′ Z n = n ( t ) | dt 2 0 � � L q + ∞ � � E n H 2 q − 2 ℓ ( f n ( t )) H 2 ℓ ( � f ′ = b 2 q − 2 ℓ a 2 ℓ n ( t )) dt , 2 0 q =0 ℓ =0 � �� � = Z n [2 q ] where H k , k = 0 , 1 , · · · ≡ Hermite polynomials and 1 √ (formal chaotic coefficients of δ 0 ( · ) ) b 2 q − 2 ℓ = 2 πH 2 q − 2 ℓ (0) (2 q − 2 ℓ )! whereas � ( − 1) ℓ +1 2 a 2 ℓ = (chaotic coefficients of | · | ) 2 ℓ ℓ !(2 ℓ − 1) π M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 13 / 30

  14. 2 nd chaotic projections √ E n √ Z n [0] = 2 L = E [ Z n ] π Proposition n sum of two squares Z n [2] = Z a n [2] + Z b n [2] , where � � √ � L � λ � 2 � 2 π 2 n 1 ( | a λ | 2 − 1) Z a dt − L n [2] := 2 2 | λ | , ˙ γ ( t ) . N n 2 π 0 λ ∈ Λ + n We have n [2]) = n Var( Z a (4 B C (Λ n ) − L 2 ) N n and, as n → + ∞ s.t. N n → + ∞ , Var( Z b n [2]) = o (Var( Z a n [2])) . M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 14 / 30

  15. clt for the nodal intersections number Theorem [R.-Wigman, 2017] Curve C ⊂ T : smooth, with nowhere zero curvature and length L . For { n } s.t. N n → + ∞ and 4 B C (Λ n ) − L 2 bdd. away from 0 , Z ∼ N (0 , 1) Z n − E [ Z n ] L � → Z. Var( Z n ) Sketch of the proof. As n → + ∞ , Var( Z n ) ∼ Var( Z a n [2]) Z a ⇒ Z n − E [ Z n ] n [2] � = � + o P (1) . Var( Z n ) Var( Z a n [2]) By Lindeberg’s criterion (see previous slide) Z a n [2] L � → Z. Var( Z a n [2]) M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 15 / 30

  16. further developments What about the case 4 B C (Λ n ) − L 2 not bdd away from 0 ? Static curves 4 B C ( µ ) − L 2 = 0 , ∀ µ prob. meas. on S 1 invariant w.r.t. rotations by π/ 2 Example C the full circle For static curves: (i) No exact asymptotic variance for Z n (upper bound); (ii) Z a Z n [2] = Z b n [2] = 0 ⇒ n [2] n [2] and the series � + ∞ ⇒ investigation of Z b q =2 Z n [2 q ] M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 16 / 30

  17. δ -separated sequences of energy levels Def. A sequence { n } of energy levels is δ -separated if λ � = λ ′ ,λ,λ ′ ∈ Λ n | λ − λ ′ | ≫ n 1 / 4+ δ . min Lemma [Bourgain-Rudnick, 2011] Fix ε > 0 . For all but O ( N 1 − ε/ 3 ) integers n ≤ N λ � = λ ′ ,λ,λ ′ ∈ Λ n | λ − λ ′ | ≫ ( √ n ) 1 − ε . min [Granville-Wigman, 2017] M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 17 / 30

  18. asymptotic variance for static curves Proposition [R.-Wigman, 2017] Let C ⊂ T be a static curve on the torus with nowhere zero curvature, of total length L . Let { n } be a δ -separated sequence such that N n → + ∞ , then � 16 A C (Λ n ) − L 2 � n Var( Z n ) = (1 + o (1)) , 4 N 2 n where �� L � 2 � λ � 2 � λ ′ � 2 � 1 A C (Λ n ) = | λ | , ˙ γ ( t ) | λ ′ | , ˙ γ ( t ) dt . N 2 n 0 λ,λ ′ ∈ Λ n Moreover, 16 A C (Λ n ) − L 2 is bounded away from zero. M. Rossi ( Paris 5 ) Nodal Intersections on the Torus Oxford – June 21, 2018 18 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend