microwave optomechanics with a carbon nanotube
play

Microwave optomechanics with a carbon nanotube ... and some news - PowerPoint PPT Presentation

introduction preparation measurement explanation TMDC nanotubes conclusions & thanks Microwave optomechanics with a carbon nanotube ... and some news about MoS 2 too ... Andreas K. H uttel University of Regensburg current


  1. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks Microwave optomechanics with a carbon nanotube ... and some news about MoS 2 too ... Andreas K. H¨ uttel University of Regensburg current affiliation: Aalto University, Espoo, Finland IWEPNM 2020, Kirchberg in Tirol, 13 March 2020

  2. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks suspended carbon nanotubes: NEMS and quantum transport metal nanotube D. R. Schmid et al. , PRB 91 , 155439 (2015), K. J. G. G¨ otz et al. , PRL 120 , 246802 (2018), M. Marga´ nska et al. , PRL 122 , 086802 (2019)

  3. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks low-temperature transport: Coulomb blockade tunnel barriers between contacts and nanotube; low temperature k B T ≪ e 2 / C : quantum dot all following measurements at T base � 10mK (unless noted) source dot drain Coulomb blockade single electron tunneling � V g N el. � s � d V sd I � s � d � s � d V g gate d I schematic drawing V sd ≈ 0 (linear response regime) d V sd CB CB CB N-1 N N+1 el. el. el. SET SET SET 0 V g

  4. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks clean transport spectrum, shell effects K. J. G. G¨ otz et al. , PRL 120 , 246802 (2018)

  5. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks driven transversal vibrations, “the old-fashioned way” • transport spectroscopy setup plus rf irradiation • mechanical resonance visible in time-averaged current 2 -17.8 dBm Q =140670 -64.5 dBm 88 I (pA) I (nA) 87 1 86 0 100 300 500 293.41 293.42 293.43 293.44 f (MHz) f (MHz) (different device) A. K. H¨ uttel et al. , Nano Lett. 9 , 2547 (2009)

  6. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks how about doing microwave optomechanics with a nanotube? x 10 µm 6 mm C. A. Regal et al. , Nature Physics 4 , 555 (2008)

  7. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks highly active field of research g mass zg M. Aspelmeyer et al., Rev. Mod. Phys. 86 , 1391 (2014)

  8. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks how about doing microwave optomechanics with a nanotube? x 10 µm 6 mm C. A. Regal et al. , Nature Physics 4 , 555 (2008)

  9. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks dispersive optomechanical coupling ↔ moving element modulates CPW resonator capacitance optical cavity with moving mirror vibrating microwave drive capacitor LC circuit ˆ � ˆ b + ˆ a † ˆ b † � H int = − ¯ hg 0 ˆ a � � ∂ω cav ω cav ∂ C cav � � = = g 0 x zpf x zpf � � ∂ x ∂ x 2 C cav � � x = 0 x = 0 M. Aspelmeyer et al., Rev. Mod. Phys. 86 , 1391 (2014)

  10. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks numbers for dispersive coupling? carbon nanotube graphene drum aluminum beam V. Singh et al. (2014) C. A. Regal et al. (2008) 10 − 20 kg 2 × 10 − 15 kg mass m resonance frequency f mech 503MHz 36MHz 2 . 3MHz 10 4 10 5 10 5 quality factor Q mech zero point fluct. x zpf 2pm 30 fm 40 fm 5 . 7GHz 5 . 9GHz cavity frequency f cav 5GHz cavity Q Q cav 437 25000 10000 6 . 75 × 10 4 (6 . 75 × 10 4 ) (6 . 75 × 10 4 ) cavity occupation n cav 2 . 6aF coupling capacitance C g 580aF ∂ C g / ∂ x capacitance sensitivity 1pF/m 170pF/m 2 . 9mHz 0 . 83Hz 0 . 15Hz zero-photon coupling g 0 2 × 10 − 10 3 × 10 − 6 3 × 10 − 7 g 0 Q cav / f cav dispersive coupling ∼ 10 − 7 Hz κ opt ( ∝ n cav ) 0 . 77Hz sideband cooling rate 12mHz A single-wall carbon nanotube is a great mechanical resonator, but is also annoyingly small. S. Blien et al. , Nature Comm. 11 , 1636 (2020); V. Singh et al. , Nat. Nano 9 , 820 (2014); C. A. Regal et al. , Nat. Phys. 4 , 555 (2008)

  11. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks we built it anyway (geometry is not everything!) 1 mm S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  12. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks nanotube deposition area • gate finger connected to cavity • isolation layer (cross-linked PMMA) 100 µm • long resistive meanders as RF block • four gold electrodes (source, drain, and two for cutting) • deep-etched areas to allow fork deposition S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  13. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks nanotube growth on commercial quartz tuning forks 4 8 m m . nanotube 100 µm 1 µm nominally 1nm Co sputter-deposited as catalyst; growth in high gas flow details: S. Blien et al. , PSSb 255 , 1800118 (2018) S. Blien et al. , PSSb 255 , 1800118 (2018)

  14. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks nanotube deposition fork CNT electrodes 1 µm 1 2 3 4 lower fork, detect contact electrically, burn outer segments with current, retract fork details: S. Blien et al. , PSSb 255 , 1800118 (2018) S. Blien et al. , PSSb 255 , 1800118 (2018)

  15. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks now this is cooled to 10mK microwave VNA source port 1 port 2 V +30 dB +30 dB -20 dB filter 300 K 4 K -10 dB HEMT + 30dB 1.8 K -10 dB filter 700 mK -20 dB 100 mK -3 dB 10 mK -10 dB

  16. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks optomechanically induced (in)transparency (I) f mech drive probe drive VNA 1 2 cavity reson. f f mech f f drive probe • strong drive at f drive = f cav − f mech (red sideband) 1 mm • probe transmission with weak signal f probe near V V f cav gate bias I dc • when f probe − f drive = f mech : interaction with mechanics − → signal loss S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  17. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks optomechanically induced (in)transparency (II) dB -30.6 • clear OMIT feature for -31,0 f probe − f drive = f mech -30.65 • in transparency due to specific cavity / -31,5 detection arrangement f drive = 5.23989 GHz -30.7 5.7424 5.7426 -32,0 • would not be visible with dB g 0 ∼ 10mHz -31 -31,0 (even at high drive power) -31,5 -31.05 • obviously something was f drive = 5.23809 GHz missing in the theory 5.7406 5.7408 -32,0 f probe (GHz) 5.740 5.742 S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  18. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks optomechanically induced (in)transparency (III) – now with gate! ω /2 π p • we trace the OMIT signal over a (GHz) sharp CB oscillation -30.8 5.74245 • “dip” position |S 21 | 2 ↔ f mech ( V g ) (dB) • depth, width of “dip” ↔ 5.74240 -31 optomechanical coupling g -1.191 -1.189 -1.187 V (V) g g /2 π • fit each trace, extract g ( V g ) 100 (kHz) • large on flanks of SET peak 20 75 g ≃ 20kHz g 0 = g / √ n cav ≃ 95Hz 50 10 g 0 /2 π (Hz) • in Coulomb blockade & at de- 0 0 -1.191 -1.189 -1.187 V (V) generacy point zero / no signal g S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  19. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks another type of capacitance • Capacitance “seen” by the coplanar resonator: C CNT = e ∂ � Q g � ∂ � N � = ··· = e C g + const. ∂ V g ∂ V g C Σ • The nanotube moves − → C g changes by δ C g − → the Coulomb oscillations shift in V g • We define an effective gate voltage modulation equivalent to the motion: C g δ V eff = V g δ C g g • This results in = ··· = e ∂ 2 � N � ∂ V eff ∂ C g ∂ C CNT = ∂ C CNT V g g ∂ x ∂ V eff ∂ x ∂ V 2 ∂ x C Σ g g amplification factor! S. Blien et al. , Nature Comm. 11 , 1636 (2020); similar concepts in articles of E. Laird, M. Sillanp¨ a¨ a, T. Duty

  20. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks Coulomb blockade enhancement of coupling V g (V) -1.19 -1.188 -1.186 1 charge <N> � N � ( V g ) : tunneling through 0 Lorenz-broadened level, width Γ C 1 q-capacitance d CNT ∝ (aF) dI/dV dV g 5 = e ∂ 2 � N � (a.u.) ∂ C CNT ∂ C g V g 0 0 ∂ V 2 ∂ x C Σ ∂ x g 30 d coupling ∝ dV g 100 g 0 = ω cav ∂ C CNT � 80 20 � x zpf g/2 π � 0 /2 π ∂ x g 2 C cav (kHz) � x = 0 (Hz) 10 insert device values ... 20 0 0 V g (V) -1.19 -1.188 -1.186 S. Blien et al. , Nature Comm. 11 , 1636 (2020)

  21. introduction preparation measurement explanation TMDC nanotubes conclusions & thanks Coulomb blockade enhancement of coupling V g (V) -1.19 -1.188 -1.186 1 <N> � N � ( V g ) : tunneling through 0 Lorenz-broadened level, width Γ C 1 d CNT ∝ (aF) dI/dV dV g 5 = e ∂ 2 � N � (a.u.) ∂ C CNT ∂ C g V g 0 0 ∂ V 2 ∂ x C Σ ∂ x g 30 d x 5.77 ∝ dV g 100 g 0 = ω cav ∂ C CNT � 80 20 � x zpf g/2 π � 0 /2 π ∂ x g 2 C cav (kHz) � x = 0 (Hz) 10 insert device values ... 20 0 0 V g (V) -1.19 -1.188 -1.186 S. Blien et al. , Nature Comm. 11 , 1636 (2020)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend