meyer s function of the hyperelliptic mapping class group
play

Meyers function of the hyperelliptic mapping class group and related - PowerPoint PPT Presentation

Meyers function of the hyperelliptic mapping class group and related invariants of 3-manifolds Takayuki Morifuji Tokyo University of Agriculture and Technology CTQM, 28 March 2008 1 Secondary invariants signature cocycle Meyers


  1. Meyer’s function of the hyperelliptic mapping class group and related invariants of 3-manifolds Takayuki Morifuji Tokyo University of Agriculture and Technology CTQM, 28 March 2008 1

  2. Secondary invariants signature cocycle Meyer’s function periodic ւ ↓ Z cov ց Torelli group η -invariant von Neumann ρ -inv Morita’s homomorphism signature op bdd coh class Casson inv CTQM, 28 March 2008 2

  3. Contents • Signature cocycle and Meyer’s function • Eta-invariant • von Neumann rho-invariant • Casson invariant • Bounded cohomology CTQM, 28 March 2008 3

  4. § Signature cocycle Σ g : an oriented closed C ∞ -surface of genus g M g = π 0 Diff + Σ g mapping class group Fix a symplectic basis of H 1 (Σ g , Z ) r : M g → Sp(2 g, Z ) homology rep . I g = Ker r Torelli group ⋆ Meyer’s signature cocycle τ ∈ Z 2 (Sp(2 g, Z ) , Z ) CTQM, 28 March 2008 4

  5. A, B ∈ Sp(2 g, Z ) , I : the identity matrix Define V A,B ⊂ R 2 g × R 2 g to be ( x, y ) | ( A − 1 − I ) x + ( B − I ) y = 0 � � V A,B = Define the pairing map on R 2 g × R 2 g by � ( x 1 , y 1 ) , ( x 2 , y 2 ) � A,B = ( x 1 + y 1 ) · J ( I − B ) y 2 , � O where · is the inner product in R 2 g , J = � I − I O ⇒ Symmetric bilinear form on V A,B CTQM, 28 March 2008 5

  6. Define τ ( A, B ) = Sign ( V A,B , � , � A,B ) From Novikov additivity, τ ( A, B ) satisfies the cocycle condition, i.e. τ ( A, B ) + τ ( AB, C ) = τ ( A, BC ) + τ ( B, C ) ⇒ τ ∈ Z 2 (Sp(2 g, Z ) , Z ) signature cocycle CTQM, 28 March 2008 6

  7. Properties of τ For A, B, C ∈ Sp(2 g, Z ) (i) ABC = I ⇒ τ ( A, B ) = τ ( B, C ) = τ ( C, A ) (ii) τ ( A, I ) = τ ( A, A − 1 ) = 0 (iii) τ ( B, A ) = τ ( A, B ) (iv) τ ( A − 1 , B − 1 ) = − τ ( A, B ) (v) τ ( CAC − 1 , CBC − 1 ) = τ ( A, B ) CTQM, 28 March 2008 7

  8. Remark • We can regard τ as a 2-cocycle of M g by r   W 4 • τ ( A, B ) = Sign ↓ Σ g  , P is the pair of pants    P 2 ∂P = M A ∪ M B ∪ − M AB mapping tori • By definition, τ is a bounded 2-cocycle (i.e. | τ | ≤ 2 g ) CTQM, 28 March 2008 8

  9. Hyperelliptic mapping class group ι : hyperelliptic involution ∆ g = { f ∈ M g | fι = ιf } If g = 1 , 2 ⇒ ∆ g = M g CTQM, 28 March 2008 9

  10. Fact H ∗ (∆ g , Q ) = 0 , ∗ = 1 , 2 Cohen, Kawazumi Hence [ τ ] has a finite order in H 2 (∆ g , Z ) Fact (2 g + 1) τ ∈ B 2 (∆ g , Z ) ⇒ there exists the uniquely defined mapping � � 1 m φ : ∆ g → 2 g + 1 Z = 2 g + 1 ∈ Q | m ∈ Z s.t. δφ = τ | ∆ g Meyer’s function of ∆ g CTQM, 28 March 2008 10

  11. Remark • φ ( f − 1 ) = − φ ( f ) � 0 = φ ( ff − 1 ) = φ ( f ) + φ ( f − 1 ) − τ ( f, f − 1 ) � • φ is a class function of ∆ g i.e. φ ( hfh − 1 ) = φ ( f ) , f, h ∈ ∆ g   φ ( hfh − 1 ) = φ ( h ) + φ ( fh − 1 ) − τ ( h, fh − 1 ) = φ ( h ) + φ ( f ) + φ ( h − 1 )     − τ ( f, h − 1 ) − τ ( h, fh − 1 ) = φ ( f ) CTQM, 28 March 2008 11

  12. ⇒ an invariant of surface bundles over the circle • δφ = τ | ∆ g implies φ is a homomorphism on the Torelli group I g ∩ ∆ g ( g ≥ 2) � For � f, h ∈ I g ∩ ∆ g φ ( fh ) = φ ( f ) + φ ( h ) − τ ( f, h ) = φ ( f ) + φ ( h ) CTQM, 28 March 2008 12

  13. a presentation of ∆ g Birman-Hilden Example generator : ζ i (1 ≤ i ≤ 2 g + 1) relation : ζ i ζ i +1 ζ i = ζ i +1 ζ i ζ i +1 ζ i ζ j = ζ j ζ i ( | i − j | ≥ 2) ( ζ 1 · · · ζ 2 g +1 ) 2 g +2 = 1 2 g +1 · · · ζ 1 ) 2 = 1 ( ζ 1 · · · ζ 2 ζ i commutes with ζ 1 · · · ζ 2 2 g +1 · · · ζ 1 CTQM, 28 March 2008 13

  14. ⋆ ζ i conjugate each other (in fact ζ i +1 = ξζ i ξ − 1 for ξ = ζ 1 · · · ζ 2 g +1 ) φ ( ζ i ) = g + 1 (for any i ) 2 g + 1 CTQM, 28 March 2008 14

  15. Put φ ( ζ ) = φ ( ζ i ) . Using a defining relation of ∆ g 2 · · · ζ 1 ) 0 = φ ( ζ 1 · · · ζ 2 g +1 = φ ( ζ 1 · · · ζ 2 g +1 ) + φ ( ζ 2 g +1 · · · ζ 1 ) − τ ( ζ 1 · · · ζ 2 g +1 , ζ 2 g +1 · · · ζ 1 ) = 2 { (2 g + 1) φ ( ζ ) − 1 } − 2 g = 2(2 g + 1) φ ( ζ ) − 2( g + 1) φ ( ζ ) = g + 1 = ⇒ 2 g + 1 CTQM, 28 March 2008 15

  16. ⋆ ψ h = ( ζ 1 · · · ζ 2 h ) 4 h +2 ∈ ∆ g Dehn twist along a bounding simple closed curve 4 φ ( ψ h ) = − 2 g + 1 h ( g − h ) BSCC map CTQM, 28 March 2008 16

  17. ✓ ✏ ∆ 1 ∼ g = 1 = M 1 = SL (2 , Z ) ✒ ✑ ⋆ Meyer, Kirby-Melvin, Sczech · · · explicit formula of τ and φ φ ( A ) = − 1 3Ψ( A ) + σ ( A ) · 1 2(1 + sgn(tr A ))   Ψ : SL (2 , Z ) → Z the Rademacher function � − 2 c � � a b � a − d   σ ( A ) = Sign for A =   a − d 2 b c d CTQM, 28 March 2008 17

  18. ⋆ Atiyah · · · geometric meanings of φ “The logarithm of the Dedekind η -function” Math. Ann. 278 (1987), 335–380 Various inv. ass. to SL (2 , Z ) coincide with φ   cf . Rademacher ′ s function , Hirzebruch signature defect , the special value of Shimizu L funct .     η invariant & its adiabatic limit , etc . CTQM, 28 March 2008 18

  19. ✓ ✏ g ≥ 2 Geometric aspects of φ ? ✒ ✑ ⋆ periodic auto. (of finite order) ⇒ η -invariant (mapping torus) ⋆ Z -covering ⇒ von Neumann ρ -invariant (1 st MMM class & Rochlin inv) ⋆ Torelli group ⇒ Casson invariant (Heegaard splitting) CTQM, 28 March 2008 19

  20. Related works ⋆ Kasagawa, Iida · · · other construction of φ for g = 2 ⋆ Matsumoto, Endo · · · the loc. sign. of hyp. Lefschetz fibrations ⋆ Kuno, Sato · · · Meyer’s function in other settings CTQM, 28 March 2008 20

  21. § Eta-invariant M : ori. closed Riem 3-mfd → η ( M ) is defined Thm Atiyah-Patodi-Singer W : a cpt ori Riem 4-mfd s.t. ∂W = M , product near M η ( M ) = 1 � p 1 − Sign W 3 W p 1 : 1 st Pontrjagin form of the metric CTQM, 28 March 2008 21

  22. Remark If W is closed ⇒ Sign W = 1 � W p 1 3 For f ∈ M g M f = Σ g × R / ( x, t ) ∼ ( f ( x ) , t +1) mapping torus Thm f ∈ ∆ g periodic ⇒ η ( M f ) = φ ( f ) Σ g × S 1 ↓ finite Riem cov M f CTQM, 28 March 2008 22

  23. This is shown by using the following formula. f ∈ M g : periodic auto. of the order n n − 1 η ( M f ) = 1 � f, f k � � τ n k =1 Moreover if f ∈ ∆ g n − 1 � 0 = φ ( id ) = φ ( f n ) = nφ ( f ) − f, f k � � τ k =1 CTQM, 28 March 2008 23

  24. 1 Cor f ∈ M g periodic, f ∈ ∆ g ⇒ η ( M f ) ∈ 2 g + 1 Z Example there exists f ∈ M 3 of order 3 s.t. its quotient orbifold ≈ S 2 (3 , 3 , 3 , 3 , 3) Then direct computation shows η ( M f ) = − 2 ∈ 1 3 / 7 Z ⇒ f / ∈ ∆ 3 CTQM, 28 March 2008 24

  25. § Relation to von Neumann rho-invariant Γ : a discrete group M : an ori closed Riem 3-mfd π 1 M → Γ : a surjective homo ⇒ Γ → ˆ M → M : Γ -covering → η (2) ( ˆ − M ) is defined von Neumann or L 2 η -invariant CTQM, 28 March 2008 25

  26. Def & Thm Cheeger-Gromov η (2) ( ˆ M ) − η ( M ) is independent of a Riem metric || ρ (2) ( ˆ M ) von Neumann rho-invariant Remark ρ (2) ( ˆ M ) is an extension of rho-invariant η γ : the η -invariant ass. to γ : π 1 M → U ( n ) ⇒ ρ = η γ − nη is independent of a Riem metric CTQM, 28 March 2008 26

  27. For f ∈ ∆ g Z → ˆ M f → M f Z -covering associated to π 1 M f → π 1 S 1 ⋆ φ is not multiplicative for coverings φ ( f k ) − kφ ( f ) Thm ρ (2) ( ˆ M f ) = lim k k →∞ Using the thm stated before and the approximation thm of the η -inv, due to Vaillant, L¨ uck-Schick CTQM, 28 March 2008 27

  28. Γ ⊲ Γ 1 ⊲ Γ 2 ⊲ · · · : descending sequence s.t. [Γ : Γ k ] < ∞ and ∩ k Γ k = { 1 } M ( k ) = ˆ M/ Γ k → M : Γ / Γ k -covering Thm Vaillant, L¨ uck-Schick � � η M ( k ) η (2) ( ˆ M ) = lim [Γ : Γ k ] k →∞ CTQM, 28 March 2008 28

  29. Example g = 1 A ∈ SL (2 , Z ) (1) Elliptic case ( | tr A | < 2 ) Let A n ∈ SL (2 , Z ) have the order n � − 1 � 0 � 0 � � � − 1 − 1 − 1 A 3 = , A 4 = , A 6 = 1 0 1 0 1 1  2 / 3 n = 3   ρ (2) ( ˆ M A n ) = 1 n = 4 4 / 3 n = 6   CTQM, 28 March 2008 29

  30. � 1 � b (2) Parabolic case ( | tr A | = 2 ) A b = ( b ∈ Z ) 0 1 � − b/ | b | b � = 0 ρ (2) ( ˆ M A b ) = − sgn( b ) = 0 b = 0 (3) Hyperbolic case ( | tr A | > 2 ) ρ (2) ( ˆ M A ) = 0 ( φ ( A k ) = kφ ( A ) holds) CTQM, 28 March 2008 30

  31. Cor If f ∈ I g ∩ ∆ g ⇒ ρ (2) ( ˆ M f ) = 0 ( φ is a homomorphism on I g ∩ ∆ g ) Remark If we restrict the above thm to the level 2 subgroup, we can obtain a relation among von Neumann rho-inv, 1 st MMM class and Rochlin inv in a framework of the bdd cohomology � � b ( S 1 , Z ) ∼ f ∗ e 1 “ = ” µ ( M f ) − ρ (2) ( ˆ M f ) in H 2 = R / Z f ∈ M g (2) = ker {M g → Sp(2 g, Z / 2) } CTQM, 28 March 2008 31

  32. § Casson invariant g ≥ 2 λ : { M | ori homology 3-sphere } → Z λ ( M ) ∼ # { π 1 M → SU (2) irr rep } /conj ⋆ Theory of characteristic classes of surface bundles we can consider the Casson inv of Z HS 3 from the view point of M g Morita K g = � BSCC map � ⊂ I g bounding simple closed curve CTQM, 28 March 2008 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend