abel jacobi map on complex hyperelliptic curves
play

Abel-Jacobi map on complex hyperelliptic curves Pascal Molin - PowerPoint PPT Presentation

Abel-Jacobi map on complex hyperelliptic curves Pascal Molin CARAMEL, Loria Nancy june 2011 Hyperelliptic curve 2 g + 1 C : y 2 = ( x a i ) i = 1 Riemann surface with two sheets. a i = branch points. color = argument of y


  1. Abel-Jacobi map on complex hyperelliptic curves Pascal Molin CARAMEL, Loria Nancy june 2011

  2. Hyperelliptic curve 2 g + 1 C : y 2 = ∏ ( x − a i ) i = 1 • Riemann surface with two sheets. • a i = branch points. color = argument of y

  3. Abel-Jacobi map u : Div 0 ( C ) C g / Ω Z 2 g → � Q mod Ω Z 2 g Q − P �→ P ω j • Homology H 1 ( C ) = Z γ 1 ⊕ · · · ⊕ Z γ 2 g • Holomorphic differentials H 1 ( C ) = C ω 1 ⊕ · · · ⊕ C ω g � � � • Ω = period matrix = ∈ M g × 2 g ( C ) . γ i ω j

  4. Abel-Jacobi map u : Div 0 ( C ) C g / Ω Z 2 g → � Q mod Ω Z 2 g Q − P �→ P ω j • Homology H 1 ( C ) = Z A 1 ⊕ · · · ⊕ Z B g B A intersection product (antisymetric) symplectic basis A 1 , . . . A g , B 1 . . . B g such that A · B = +1 ( A i · B j = δ i , j ) , A i · A j = B i · B j = 0. • Holomorphic differentials H 1 ( C ) = C ω 1 ⊕ · · · ⊕ C ω g � � � • Ω = period matrix = ∈ M g × 2 g ( C ) . γ i ω j

  5. Abel-Jacobi map u : Div 0 ( C ) C g / Ω Z 2 g → � Q mod Ω Z 2 g Q − P �→ P ω j • Homology H 1 ( C ) = Z A 1 ⊕ · · · ⊕ Z B g • Holomorphic differentials H 1 ( C ) = C ω 1 ⊕ · · · ⊕ C ω g take dual basis ω i s.t. � B j ω i = δ i , j � � � • Ω = period matrix = ( τ I g ) , τ = ∈ H g . A j ω i

  6. Computation of the period matrix • standard branch cuts a 6 a 5 • standard symplectic basis A 3 a 1 a 7 when roots are well ordered a 2 B 3 A 1 • canonical holomorphic forms a 4 B 1 a 3 d x i B 2 A 2 y , i = 1 . . . g Need to parametrize and integrate efficiently over the loops.

  7. Numerical integration Theorem (Double-exponential integration) Assume f : ] a , b [ → C admits a holomorphic continuation to a domain R τ = { tanh ( λ sinh R ± it ) , t < τ } , and that | f | < M on R τ . Then for any D > 0 , there exists n , h > 0 such that n ∼ D log D 2 πτ and � � b � n � � � � e − D ∑ a f − f ( z k ) d z k � � � � k = − n � with • z k = b + a 2 + b − a 2 tanh ( λ sinh ( kh )) λ h cosh ( kh ) • d z k = b − a cosh 2 ( λ sinh ( kh )) . 2

  8. Convergence of DE integration Dependency in the holomorphy domain R τ : R π/ 4 R π/ 5 R π/ 10 a b a b a b n ∼ 0 . 5 D log D n ∼ 0 . 25 D log D n ∼ 0 . 2 D log D

  9. Van Wamelen Low variations : integrate far from branch points a i . a 6 a 5 a 1 a 7 a 2 a 4 a 3

  10. Van Wamelen Low variations : integrate far from branch points a i . a 6 a 5 a 1 a 7 a 2 a 4 a 3 B 2 A 2

  11. Van Wamelen Low variations : integrate far from branch points a i . a 6 a 5 a 1 a 7 a 2 a 4 a 3 B 2 A 2 more than 25 integrals (minimum 5 g + 3 = 18)

  12. Between branch points a 6 a 5 A 3 a 1 a 7 a 2 B 3 A 1 a 4 B 1 a 3 B 2 A 2

  13. Between branch points a 6 a 5 A 3 B 3 a 1 a 7 a 2 A 1 a 4 B 1 a 3 B 2 A 2

  14. Between branch points a 6 a 5 A 3 B 3 a 1 The double-exponential a 7 a 2 change of variable A 1 desingularizes the branch a 4 points. B 1 a 3 B 2 A 2 � a 6 λ ( a 6 − a 7 ) sinh ( t ) d t d x d x � � = 2 = � , y y B 3 a 7 R cosh ( λ sinh ( t )) − ∏ k � = 6 , 7 ϕ 6 , 7 ( t ) − a k ϕ i , j ( t ) = a i + a j + a j − a i tanh ( sinh ( t )) 2 2

  15. Between branch points a 6 a 5 A 3 a 1 a 7 a 2 B 3 B ′ A 1 2 = B 2 − B 3 B ′ 2 B ′ 3 = B 3 a 4 B 1 a 3 B 2 A 2 Impossible for B 1 , B 2 → change basis.

  16. Between branch points a 6 a 5 A 3 a 1 a 7 a 2 B 3 B ′ B ′ A 1 2 = B 2 − B 3 2 B ′ 3 = B 3 a 4 B 1 a 3 A 2

  17. Between branch points a 6 a 5 A 3 a 1 a 7 B ′ 1 = B 1 − B 2 a 2 B 3 B ′ A 1 2 B ′ 2 = B 2 − B 3 B ′ 1 a 4 B ′ 3 = B 3 a 3 A 2

  18. Between branch points a 6 a 5 A 3 B 3 a 1 a 7 B ′ 1 = B 1 − B 2 a 2 A 1 B ′ 2 B ′ 2 = B 2 − B 3 B ′ 1 a 4 B ′ 3 = B 3 A 2 a 3

  19. Between branch points a 6 a 5 A 3 B 3 a 1 a 7 B ′ 1 = B 1 − B 2 a 2 A 1 B ′ 2 B ′ 2 = B 2 − B 3 B ′ 1 a 4 B ′ 3 = B 3 A 2 a 3 Only 2 g intégrals. But here � 2 is slow... B ′

  20. Best homology basis Chain of points : a 6 a 6 a 5 a 5 A 3 A 3 B 3 a 1 B 3 a 1 a 7 a 7 a 2 A 1 a 2 A 1 B ′ 2 B ′ 1 a 4 a 4 A 2 A 2 a 3 a 3 τ = 0 . 46 τ = 0 . 52

  21. Best homology basis Chain of points : a 6 a 6 a 5 a 5 A 3 A 3 B 3 a 1 B 3 a 1 a 7 a 7 a 2 A 1 a 2 A 1 B ′ 2 B ′ 1 a 4 a 4 A 2 A 2 a 3 a 3 τ = 0 . 46 τ = 0 . 52 Any loop around two branch points → homology class � = 0 a 6 C 2 a 5 a 1 C 3 C 1 a 7 Select 2 g cheapest integrals. C 5 C 6 a 2 Homology basis ⇔ spanning tree. C 4 a 4 a 3 τ = 0 . 70

  22. Numerical branch cuts How to compute y ( x ) on a loop ? must avoid branch cuts. y = ∏ √ x − a i � custom y a i , a j ( x ) y = ∏ ( x − a i ) √ x − a k . Parallelize locally y a i , a j ( x ) = ∏ ai , aj k The (sign of the) loop C i is determined by the square root chosen for the computation of � C j ω i .

  23. Numerical branch cuts How to compute y ( x ) on a loop ? must avoid branch cuts. y = ∏ √ x − a i � custom y a i , a j ( x ) y = ∏ ( x − a i ) √ x − a k . Parallelize locally y a i , a j ( x ) = ∏ ai , aj k The (sign of the) loop C i is determined by the square root chosen for the computation of � C j ω i .

  24. Retrieve symplecticity Compute intersection C i · C j using local square root at end point. a 6 b a C 2 a 5 a 1 p C 3 C 1 τ a 7 π + τ C 5 a 2 C 6 2 ⊖ C 4 a 4 a 3 d Lemma y = 2 � b d x d x • � C i a y a , b ( x ) Let C i and C j such that y = 2 � d d x d x • � y b , d ( x ) . C j b √ � � a , b b − a k ∏ a k � = a , b = ( C i · C j ) π + τ √ Then arg 2 b , d b − a k ∏ a k � = b , d

  25. Retrieve symplecticity Compute intersection C i · C j using local square root at end point. a 6 a b C 2 a 5 C 3 a 1 p C 1 τ π + τ a 7 C 5 C 6 2 a 2 ⊖ C 4 a 4 a 3 d symplectic reduction − 1 − 1 0 0 1 0 0 0 0 1 0 0     1 0 − 1 0 − 1 0 0 0 0 0 1 0 − 1 0 1 0 0 0 0 0 0 0 0 1      →     − 1 0 0 0 0 1 − 1 0 0 0 0 0    − 1 0 1 1 0 0 0 0 0 0 0 0 − 1 − 1 1 0 0 0 0 0 0 0 0 0

  26. Algorithm 1 compute integration cost for every edge ( a i , a j ) 2 find minimum spanning tree ( C 1 , . . . C 2 g ) � � � d x i 3 compute periods Ω C = C j y i , j 4 compute intersection matrix X = ( C i · C j ) 5 perform symplectic reduction t PXP = J g 6 big period matrix Ω = Ω C P = ( Ω 0 Ω 1 ) 7 small period matrix τ = Ω − 1 0 Ω 1 ∈ H g � g 2 D 2 log 2 ( D ) � Complexity : O bit operations.

  27. Incomplete integrals • integrate from P to closest branch point a i • � a j a 1 = 2-torsion 1 1  0 0 0 0 0  2 2 1 1 1 1 0 0 0   2 2 2 2 1   0 0 0 0 0 0   ( u ( a j − a 1 )) = Ω 2  1 1  0 0 0 0 0   2 2  1 1 1 1  0 0 0   2 2 2 2 1 1 1 1 1 1 0 2 2 2 2 2 2

  28. Timings Computation of the period matrix : Genus precision Magma DE factor g=3 100 1.3s 0.2s 6.5 1 000 6mn40 16s 23 2 000 82h36 1mn04 4600 3 000 - 3mn - 10 000 - 1h05 - g=15 2 000 - 28mn52 - Timings on a single core. Integration highly parallelisable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend