matrix calculations eigenvalues and eigenvectors
play

Matrix Calculations: Eigenvalues and Eigenvectors H. Geuvers (and A. - PowerPoint PPT Presentation

Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Matrix Calculations: Eigenvalues and Eigenvectors H. Geuvers (and A. Kissinger) Institute for Computing and Information Sciences Radboud


  1. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Matrix Calculations: Eigenvalues and Eigenvectors H. Geuvers (and A. Kissinger) Institute for Computing and Information Sciences Radboud University Nijmegen Version: spring 2016 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 1 / 37

  2. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Outline Eigenvalues and Eigenvectors Applications of Eigenvalues and Eigenvectors H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 2 / 37

  3. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Political swingers re-revisited, part I • Recall the political transisition matrix � 0 . 8 0 . 1 � � 8 1 � = 1 P = 10 0 . 2 0 . 9 2 9 • with some iterations: � 91 . 5 � 89 . 05 � � � � � 100 � � � 100 � � 100 95 P 2 · P 3 · P · = = = · · · 150 155 150 158 . 5 150 160 . 95 • Does this converge to a stable lefty-righty division? If so, what is a stable division? � � � � 83 1 83 1 3 3 • Check for yourself: P · = 166 2 166 2 3 3 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 4 / 37

  4. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Political swingers re-revisited, part II � x � � x � • When do we have P · = ? y y • This involves: � 0 . 8 x + 0 . 1 y = x � (0 . 8 − 1) x + 0 . 1 y = 0 so 0 . 2 x + 0 . 9 y = y 0 . 2 x − (0 . 9 − 1) y = 0 � − 0 . 2 x + 0 . 1 y = 0 � − 2 x + y = 0 ie. thus so y = 2 x 0 . 2 x − 0 . 1 y = 0 2 x − y = 0 � x � x � � • Indeed, P · = Twice as many righties is stable! 2 x 2 x • We found it by solving (homogeneous) equations given by the matrix: � − 0 . 2 � � − 2 � 0 . 1 1 1 P − I 2 = = 10 0 . 2 − 0 . 1 2 − 1 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 5 / 37

  5. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvector and eigenvalues Definition Assume an n × n matrix A . An eigenvector for A is a non-null vector v � = 0 for which there is an eigenvalue λ ∈ R with: A · v = λ · v Example � 100 � � 8 1 � is an eigenvector for P = 1 with eigenvalue λ = 1. 200 10 2 9 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 6 / 37

  6. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Two basic results Lemma An eigenvector has at most one eigenvalue Proof : Assume A · v = λ 1 v and A · v = λ 2 v . Then: 0 = A · v − A · v = λ 1 v − λ 2 v = ( λ 1 − λ 2 ) v Since v � = 0 we must have λ 1 − λ 2 = 0, and thus λ 1 = λ 2 . - Lemma If v is an eigenvector, then so is a v , for each a � = 0 . Proof : If A · v = λ v , then: A · ( a v ) = a ( A · v ) since matrix application is linear = a ( λ v ) = ( a λ ) v = ( λ a ) v = λ ( a v ) . - H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 7 / 37

  7. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Finding eigenvectors and eigenvalues • We seek a eigenvector v and eigenvalue λ ∈ R with A · v = λ v • That is: λ and v ( v � = 0) such that ( A − λ · I ) · v = 0 • Thus, we seek λ for which the system of equations corresponding to the matrix A − λ · I has a non-zero solution • Hence we seek λ ∈ R for which the matrix A − λ · I does not have n pivots in its echelon form • This means: we seek λ ∈ R such that A − λ · I is not-invertible • So we need: det( A − λ · I ) = 0 • This can be seen as an equation, with λ as variable • This det( A − λ · I ) is called the characteristic polynomial of the matrix A H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 8 / 37

  8. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvalue example I � 1 5 � • Task : find eigenvalues of matrix A = 3 3 � 1 5 � � λ 0 � � 1 − λ � 5 • Note: A − λ · I = − = 3 3 0 λ 3 3 − λ • Thus: � � 1 − λ 5 � � det( A − λ · I ) = 0 ⇐ ⇒ � = 0 � � � � 3 3 − λ � ⇐ ⇒ (1 − λ )(3 − λ ) − 5 · 3 = 0 ⇒ λ 2 − 4 λ − 12 = 0 ⇐ ⇐ ⇒ ( λ − 6)( λ + 2) = 0 ⇐ ⇒ λ = 6 or λ = − 2 . H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 9 / 37

  9. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Recall: abc-formula • Consider a second-degree (quadratic) equation ax 2 + bx + c = 0 (for a � = 0) • Its solutions are: √ b 2 − 4 ac s 1 , 2 = − b ± 2 a • These solutions coincide (ie. s 1 = s 2 ) if b 2 − 4 ac = 0 • Real solutions do not exist if b 2 − 4 ac < 0 (But “complex number” solutions do exist in this case.) • [ Recall, if s 1 and s 2 are solutions of ax 2 + bx + c = 0, then we can write ax 2 + bx + c = a ( x − s 1 )( x − s 2 ) ] H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 10 / 37

  10. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Higher degree polynomial equations • For third and fourth degree polynomial equations there are (complicated) formulas for the solutions. • For degree ≥ 5 no such formulas exist (proved by Abel) • In those cases one can at most use approximations. • In the examples in this course the solutions will typically be “obvious”. H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 11 / 37

  11. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvalue example II   3 − 1 − 1 • Task : find eigenvalues of A = − 12 0 5   4 − 2 − 1 � � 3 − λ − 1 − 1 � � � � • Characteristic polynomial is − 12 − λ 5 � � � � 4 − 2 − 1 − λ � � � � � � � � − λ 5 − 1 − 1 − 1 − 1 � � � � � � = (3 − λ ) � + 12 � + 4 � � � � � � − 2 − 1 − λ − 2 − 1 − λ − λ 5 � � � � � � � � � � � � � � � � = (3 − λ ) λ (1 + λ ) + 10 + 12 1 + λ − 2 + 4 − 5 − λ = (3 − λ )( λ 2 + λ + 10) + 12( λ − 1) − 20 − 4 λ = 3 λ 2 + 3 λ + 30 − λ 3 − λ 2 − 10 λ + 12 λ − 12 − 20 − 4 λ = − λ 3 + 2 λ 2 + λ − 2 . H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 12 / 37

  12. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvalue example II (cntd) • We need to solve − λ 3 + 2 λ 2 + λ − 2 = 0 • We try a few “obvious” values: λ = 1 YES! • Reduce from degree 3 to 2, by separating ( λ − 1) in: − λ 3 + 2 λ 2 + λ − 2 = ( λ − 1)( a λ 2 + b λ + c ) = a λ 3 + ( b − a ) λ 2 + ( c − b ) λ − c • This works for a = − 1, b = 1, c = 2 • Now we use “abc” for the equation − λ 2 + λ + 2 = 0 • Solutions: λ = − 1 ± √ 1 + 4 · 2 = − 1 ± 3 giving λ = 2 , − 1 − 2 − 2 • All three eigenvalues: λ = 1 , λ = − 1 , λ = 2 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 13 / 37

  13. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Getting eigenvectors • Once we have eigenvalues λ i for a matrix A we can find corresponding eigenvectors v i , with A · v i = λ i v i • These v i appear as the solutions of ( A − λ i · I ) · v = 0 • We can make a convenient choice, using that scalar multiplications a · v i are also a solution • We use standard techniqes for solving such equations. H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 14 / 37

  14. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvector example I � 1 5 � Recall the eigenvalues λ = − 2 , λ = 6 for A = 3 3 � 1 + 2 � � 3 5 � 5 λ = − 2 gives matrix A − λ I = = 3 3 + 2 3 5 � 3 x + 5 y = 0 • Corresponding system of equations 3 x + 5 y = 0 • Solution choice x = − 5 , y = 3, so ( − 5 , 3) is eigenvector (of matrix A with eigenvalue λ = − 2) • Check: � � � 1 5 � � − 5 � � − 5 + 15 � � 10 � � − 5 · = = = − 2 3 3 3 − 15 + 9 − 6 3 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 15 / 37

  15. Eigenvalues and Eigenvectors Radboud University Nijmegen Applications of Eigenvalues and Eigenvectors Eigenvector example I (cntd) � 1 − 6 � � − 5 � 5 5 λ = 6 gives matrix A − λ I = = 3 3 − 6 3 − 3 � − 5 x + 5 y = 0 • Corresponding system of equations 3 x − 3 y = 0 • Solution choice x = 1 , y = 1, so (1 , 1) is eigenvector (of matrix A with eigenvalue λ = 6) • Check: � 1 5 � � � 1 � � 1 + 5 � � 6 � � 1 � · = = = 6 3 3 1 3 + 3 6 1 H. Geuvers (and A. Kissinger) Version: spring 2016 Matrix Calculations 16 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend