linear algebra
play

Linear Algebra Chapter 5: Eigenvalues and Eigenvectors Section 5.1. - PowerPoint PPT Presentation

Linear Algebra Chapter 5: Eigenvalues and Eigenvectors Section 5.1. Eigenvalues and EigenvectorsProofs of Theorems April 10, 2020 () Linear Algebra April 10, 2020 1 / 23 Table of contents Page 300 Number 8 1 Page 300 Number 14 2


  1. Linear Algebra Chapter 5: Eigenvalues and Eigenvectors Section 5.1. Eigenvalues and Eigenvectors—Proofs of Theorems April 10, 2020 () Linear Algebra April 10, 2020 1 / 23

  2. Table of contents Page 300 Number 8 1 Page 300 Number 14 2 Theorem 5.1. Properties of Eigenvalues and Eigenvectors 3 Page 298 Example 8 4 Page 300 Number 18 5 Page 301 Number 30 6 Page 301 Number 32 7 Page 302 Number 38 8 Page 302 Number 40 9 () Linear Algebra April 10, 2020 2 / 23

  3. Page 300 Number 8 Page 300 Number 8 Page 300 Number 8. Find the characteristic polynomial, the real  − 1 0 0   . eigenvalues, and the corresponding eigenvectors for A = − 4 2 − 1  4 0 3 Solution. We have  − 1 0 0   1 0 0   − 1 − λ 0 0   =  . A − λ I = − 4 2 − 1  − λ 0 1 0 − 4 2 − λ − 1    4 0 3 0 0 1 4 0 3 − λ () Linear Algebra April 10, 2020 3 / 23

  4. Page 300 Number 8 Page 300 Number 8 Page 300 Number 8. Find the characteristic polynomial, the real  − 1 0 0   . eigenvalues, and the corresponding eigenvectors for A = − 4 2 − 1  4 0 3 Solution. We have  − 1 0 0   1 0 0   − 1 − λ 0 0   =  . A − λ I = − 4 2 − 1  − λ 0 1 0 − 4 2 − λ − 1    4 0 3 0 0 1 4 0 3 − λ So the characteristic polynomial is � � − 1 − λ 0 0 � � � � p ( λ ) = det( A − λ I ) = − 4 2 − λ − 1 � � � � 4 0 3 − λ � � � � 2 − λ − 1 � � = ( − 1 − λ ) � − (0) + (0) � � 0 3 − λ � = ( − 1 − λ ) ((2 − λ )(3 − λ ) − ( − 1)(0)) = ( − 1 − λ )(2 − λ )(3 − λ ). () Linear Algebra April 10, 2020 3 / 23

  5. Page 300 Number 8 Page 300 Number 8 Page 300 Number 8. Find the characteristic polynomial, the real  − 1 0 0   . eigenvalues, and the corresponding eigenvectors for A = − 4 2 − 1  4 0 3 Solution. We have  − 1 0 0   1 0 0   − 1 − λ 0 0   =  . A − λ I = − 4 2 − 1  − λ 0 1 0 − 4 2 − λ − 1    4 0 3 0 0 1 4 0 3 − λ So the characteristic polynomial is � � − 1 − λ 0 0 � � � � p ( λ ) = det( A − λ I ) = − 4 2 − λ − 1 � � � � 4 0 3 − λ � � � � 2 − λ − 1 � � = ( − 1 − λ ) � − (0) + (0) � � 0 3 − λ � = ( − 1 − λ ) ((2 − λ )(3 − λ ) − ( − 1)(0)) = ( − 1 − λ )(2 − λ )(3 − λ ). () Linear Algebra April 10, 2020 3 / 23

  6. Page 300 Number 8 Page 300 Number 8 (continued 1) Solution (continued). So the eigenvalues are λ 1 = − 1, λ 2 = 2, λ 3 = 3. To find the eigenvectors corresponding to each eigenvalue, we consider the v = � formula A � v = λ� v or ( A − λ I ) � 0 (see Note 5.1.A): () Linear Algebra April 10, 2020 4 / 23

  7. Page 300 Number 8 Page 300 Number 8 (continued 1) Solution (continued). So the eigenvalues are λ 1 = − 1, λ 2 = 2, λ 3 = 3. To find the eigenvectors corresponding to each eigenvalue, we consider the v = � formula A � v = λ� v or ( A − λ I ) � 0 (see Note 5.1.A): v 1 = [ v 1 , v 2 , v 3 ] T an eigenvector corresponding to the λ 1 = − 1. With � v 1 = � eigenvalue λ 1 = − 1 we need ( A − λ 1 I ) � 0. () Linear Algebra April 10, 2020 4 / 23

  8. Page 300 Number 8 Page 300 Number 8 (continued 1) Solution (continued). So the eigenvalues are λ 1 = − 1, λ 2 = 2, λ 3 = 3. To find the eigenvectors corresponding to each eigenvalue, we consider the v = � formula A � v = λ� v or ( A − λ I ) � 0 (see Note 5.1.A): v 1 = [ v 1 , v 2 , v 3 ] T an eigenvector corresponding to the λ 1 = − 1. With � v 1 = � eigenvalue λ 1 = − 1 we need ( A − λ 1 I ) � 0. So we consider the augmented matrix     − 1 − ( − 1) 0 0 0 0 0 0 0  = − 4 2 − ( − 1) − 1 0 − 4 3 − 1 0    4 0 3 − ( − 1) 0 4 0 4 0  0 0 0 0   0 0 0 0  R 3 → R 3 + R 2 R 2 → R 2 − R 3 � � − 4 3 − 1 0 − 4 0 − 4 0     0 3 3 0 0 3 3 0  0 0 0 0   1 0 1 0  R 2 → R 2 / ( − 4) R 1 ↔ R 2 � � 1 0 1 0 0 0 0 0 R 3 → R 3 / 3     0 1 1 0 0 1 1 0 () Linear Algebra April 10, 2020 4 / 23

  9. Page 300 Number 8 Page 300 Number 8 (continued 1) Solution (continued). So the eigenvalues are λ 1 = − 1, λ 2 = 2, λ 3 = 3. To find the eigenvectors corresponding to each eigenvalue, we consider the v = � formula A � v = λ� v or ( A − λ I ) � 0 (see Note 5.1.A): v 1 = [ v 1 , v 2 , v 3 ] T an eigenvector corresponding to the λ 1 = − 1. With � v 1 = � eigenvalue λ 1 = − 1 we need ( A − λ 1 I ) � 0. So we consider the augmented matrix     − 1 − ( − 1) 0 0 0 0 0 0 0  = − 4 2 − ( − 1) − 1 0 − 4 3 − 1 0    4 0 3 − ( − 1) 0 4 0 4 0  0 0 0 0   0 0 0 0  R 3 → R 3 + R 2 R 2 → R 2 − R 3 � � − 4 3 − 1 0 − 4 0 − 4 0     0 3 3 0 0 3 3 0  0 0 0 0   1 0 1 0  R 2 → R 2 / ( − 4) R 1 ↔ R 2 � � 1 0 1 0 0 0 0 0 R 3 → R 3 / 3     0 1 1 0 0 1 1 0 () Linear Algebra April 10, 2020 4 / 23

  10. Page 300 Number 8 Page 300 Number 8 (continued 2) Solution (continued).     1 0 1 0 1 0 1 0 R 2 ↔ R 3  . � 0 0 0 0 0 1 1 0    0 1 1 0 0 0 0 0 + = 0 = − v 3 v 1 v 3 v 1 So we need v 2 + v 3 = 0 , or v 2 = − v 3 or, with r = v 3 0 = 0 = v 3 v 3 v 1 = − r as a free variable, = − r . v 2 v 3 = r () Linear Algebra April 10, 2020 5 / 23

  11. Page 300 Number 8 Page 300 Number 8 (continued 2) Solution (continued).     1 0 1 0 1 0 1 0 R 2 ↔ R 3  . � 0 0 0 0 0 1 1 0    0 1 1 0 0 0 0 0 + = 0 = − v 3 v 1 v 3 v 1 So we need v 2 + v 3 = 0 , or v 2 = − v 3 or, with r = v 3 0 = 0 = v 3 v 3 v 1 = − r as a free variable, = − r . So the collection of all eigenvectors of v 2 v 3 = r   − 1  where r ∈ R , r � = 0. λ 1 = − 1 is � v 1 = r − 1  1 () Linear Algebra April 10, 2020 5 / 23

  12. Page 300 Number 8 Page 300 Number 8 (continued 2) Solution (continued).     1 0 1 0 1 0 1 0 R 2 ↔ R 3  . � 0 0 0 0 0 1 1 0    0 1 1 0 0 0 0 0 + = 0 = − v 3 v 1 v 3 v 1 So we need v 2 + v 3 = 0 , or v 2 = − v 3 or, with r = v 3 0 = 0 = v 3 v 3 v 1 = − r as a free variable, = − r . So the collection of all eigenvectors of v 2 v 3 = r   − 1  where r ∈ R , r � = 0. λ 1 = − 1 is � v 1 = r − 1  1 () Linear Algebra April 10, 2020 5 / 23

  13. Page 300 Number 8 Page 300 Number 8 (continued 3) Solution (continued). v 2 = � λ 2 = 2. As above, we consider ( A − 2 I ) � 0 and consider the augmented matrix     − 1 − (2) 0 0 0 − 3 0 0 0  = − 4 2 − (2) − 1 0 − 4 0 − 1 0    4 0 3 − (2) 0 4 0 1 0  1 0 0 0   1 0 0 0  R 1 → R 1 / ( − 3) R 2 → R 2 +4 R 1 � � − 4 0 − 1 0 0 0 − 1 0 R 3 → R 3 − 4 R 1     4 0 1 0 0 0 1 0  1 0 0 0   1 0 0 0  R 3 → R 3 + R 2 R 2 →− R 2 � �  . 0 0 − 1 0 0 0 1 0    0 0 0 0 0 0 0 0 () Linear Algebra April 10, 2020 6 / 23

  14. Page 300 Number 8 Page 300 Number 8 (continued 4) = 0 = 0 v 1 v 1 Solution (continued). So we need v 3 = 0 , or v 2 = v 2 or, with 0 = 0 = 0 v 3 v 1 = 0 s = v 2 as a free variable, = . So the collection of all eigenvectors v 2 s v 3 = 0   0  where s ∈ R , s � = 0. of λ 2 = 2 is � v 2 = s 1  0 () Linear Algebra April 10, 2020 7 / 23

  15. Page 300 Number 8 Page 300 Number 8 (continued 4) = 0 = 0 v 1 v 1 Solution (continued). So we need v 3 = 0 , or v 2 = v 2 or, with 0 = 0 = 0 v 3 v 1 = 0 s = v 2 as a free variable, = . So the collection of all eigenvectors v 2 s v 3 = 0   0  where s ∈ R , s � = 0. of λ 2 = 2 is � v 2 = s 1  0 () Linear Algebra April 10, 2020 7 / 23

  16. Page 300 Number 8 Page 300 Number 8 (continued 5) Solution (continued). v 3 = � λ 3 = 3. As above, we consider ( A − 3 I ) � 0 and consider the augmented matrix  − 1 − (3) 0 0 0   − 4 0 0 0   = − 4 2 − (3) − 1 0 − 4 − 1 − 1 0    4 0 3 − (3) 0 4 0 0 0     − 4 0 0 0 1 0 0 0 R 1 → R 1 / ( − 4) R 2 → R 2 − R 1 � �  . 0 − 1 − 1 0 0 1 1 0 R 3 → R 3 + R 1 R 2 → − R 2    0 0 0 0 0 0 0 0 v 1 = 0 v 1 = 0 So we need v 2 + v 3 = 0 , or v 2 = − v 3 . . . 0 = 0 v 3 = v 3 () Linear Algebra April 10, 2020 8 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend