linear algebra
play

Linear Algebra Chapter 9: Complex Scalars Section 9.1. Algebra of - PowerPoint PPT Presentation

Linear Algebra Chapter 9: Complex Scalars Section 9.1. Algebra of Complex NumbersProofs of Theorems December 23, 2018 () Linear Algebra December 23, 2018 1 / 7 Table of contents Page 463 Number 7(b) 1 Theorem 9.1(4). Properties of


  1. Linear Algebra Chapter 9: Complex Scalars Section 9.1. Algebra of Complex Numbers—Proofs of Theorems December 23, 2018 () Linear Algebra December 23, 2018 1 / 7

  2. Table of contents Page 463 Number 7(b) 1 Theorem 9.1(4). Properties of Conjugation in C 2 Page 463 Number 20 3 Page 464 Number 28(a) 4 () Linear Algebra December 23, 2018 2 / 7

  3. Page 463 Number 7(b) Page 463 Number 7(b) Page 463 Number 7(b). Let z = 3 + i and w = 3 + 4 i . Find z / w . Solution. We have 1 | w | 2 = 3 − 4 i 3 2 + 4 2 = 3 25 − 4 w w = 25 i , so w = (3 + i )(3 − 4 i ) z = 9 − 12 i + 3 i + 4 13 − 9 i = . 25 25 25 () Linear Algebra December 23, 2018 3 / 7

  4. Page 463 Number 7(b) Page 463 Number 7(b) Page 463 Number 7(b). Let z = 3 + i and w = 3 + 4 i . Find z / w . Solution. We have 1 | w | 2 = 3 − 4 i 3 2 + 4 2 = 3 25 − 4 w w = 25 i , so w = (3 + i )(3 − 4 i ) z = 9 − 12 i + 3 i + 4 13 − 9 i = . 25 25 25 () Linear Algebra December 23, 2018 3 / 7

  5. Theorem 9.1(4). Properties of Conjugation in C Theorem 9.1(4)) Theorem 9.1. Properties of Conjugation in C . Let z = a + bi and w = c + di be complex numbers. Then 4. z / w = z / w . Proof. We know a / w = ( c − di ) / ( c 2 + d 2 ), so w = ( a + bi )( c − di ) = ac − adi + bci + bd = ( ac + bd ) + ( bc − ad ) i z , c 2 + d 2 c 2 + d 2 c 2 + d 2 () Linear Algebra December 23, 2018 4 / 7

  6. Theorem 9.1(4). Properties of Conjugation in C Theorem 9.1(4)) Theorem 9.1. Properties of Conjugation in C . Let z = a + bi and w = c + di be complex numbers. Then 4. z / w = z / w . Proof. We know a / w = ( c − di ) / ( c 2 + d 2 ), so w = ( a + bi )( c − di ) = ac − adi + bci + bd = ( ac + bd ) + ( bc − ad ) i z , c 2 + d 2 c 2 + d 2 c 2 + d 2 so that � z = ( ac + bd ) + ( bc − ad ) i = ac + adi − bci + bd � c 2 + d 2 c 2 + d 2 w = ( a − bi )( c + di ) 1 / w = z z = w . c 2 + d 2 () Linear Algebra December 23, 2018 4 / 7

  7. Theorem 9.1(4). Properties of Conjugation in C Theorem 9.1(4)) Theorem 9.1. Properties of Conjugation in C . Let z = a + bi and w = c + di be complex numbers. Then 4. z / w = z / w . Proof. We know a / w = ( c − di ) / ( c 2 + d 2 ), so w = ( a + bi )( c − di ) = ac − adi + bci + bd = ( ac + bd ) + ( bc − ad ) i z , c 2 + d 2 c 2 + d 2 c 2 + d 2 so that � z = ( ac + bd ) + ( bc − ad ) i = ac + adi − bci + bd � c 2 + d 2 c 2 + d 2 w = ( a − bi )( c + di ) 1 / w = z z = w . c 2 + d 2 () Linear Algebra December 23, 2018 4 / 7

  8. Page 463 Number 20 Page 463 Number 20 Page 463 Number 20. Find the three cube roots of − 27. Solution. We have z = − 27 = 27(cos π + i sin π ). So the 3 cube roots are � � π 3 + 2 k π � � π 3 + 2 k π �� ( − 27) 1 / 3 cos + i sin 3 3 for k = 0 , 1 , 2. () Linear Algebra December 23, 2018 5 / 7

  9. Page 463 Number 20 Page 463 Number 20 Page 463 Number 20. Find the three cube roots of − 27. Solution. We have z = − 27 = 27(cos π + i sin π ). So the 3 cube roots are � � π 3 + 2 k π � � π 3 + 2 k π �� ( − 27) 1 / 3 cos + i sin 3 3 for k = 0 , 1 , 2. That is, the roots are √ � � � π � π 1 3 � � �� 3 cos + i sin = 3 2 + i , 3 3 3 3 (cos ( π ) + i sin ( π )) = − 3 , √ � � � � 5 π � � 5 π �� 1 3 3 cos + i sin = 3 2 − i . 3 3 3 () Linear Algebra December 23, 2018 5 / 7

  10. Page 463 Number 20 Page 463 Number 20 Page 463 Number 20. Find the three cube roots of − 27. Solution. We have z = − 27 = 27(cos π + i sin π ). So the 3 cube roots are � � π 3 + 2 k π � � π 3 + 2 k π �� ( − 27) 1 / 3 cos + i sin 3 3 for k = 0 , 1 , 2. That is, the roots are √ � � � π � π 1 3 � � �� 3 cos + i sin = 3 2 + i , 3 3 3 3 (cos ( π ) + i sin ( π )) = − 3 , √ � � � � 5 π � � 5 π �� 1 3 3 cos + i sin = 3 2 − i . 3 3 3 () Linear Algebra December 23, 2018 5 / 7

  11. Page 464 Number 28(a) Page 464 Number 28(a) Page 464 Number 28(a). In calculus it is shown that 2! + x 3 3! + x 4 1 + x + x e x = 4! + · · · x − x 3 3! + x 5 5! − x 7 7! + x 9 sin x = 9! + · · · 1 − x 2 2! + x 4 4! − x 6 6! + x 8 cos x = 8! + · · · . Proceed formally to show that e i θ − cos θ + i sin θ . This is Euler’s Formula . (The “formal” assumption you need is that each of the series converge absolutely. This allows you to rearrange the series without affecting their limits.) () Linear Algebra December 23, 2018 6 / 7

  12. Page 464 Number 28(a) Page 464 Number 28(a) (continued) Solution. From the series representations, we have ∞ ( i θ ) n e i θ = � n ! n =0 ∞ ( i θ ) n ∞ ( i θ ) n ∞ ( i θ ) n ∞ ( i θ ) n � � � � = + + + n ! n ! n ! n ! n =0 n =0 n =0 n =0 n ≡ 0( mod 4) n ≡ 1( mod 4) n ≡ 2( mod 4) n ≡ 3( mod 4) since the series converges absolutely ∞ ( θ ) n ∞ i θ n ∞ − θ n ∞ − i θ n � � � � � � � � = n ! + n ! + + n ! n ! n =0 n =0 n =0 n =0 n ≡ 0( mod 4) n ≡ 1( mod 4) n ≡ 2( mod 4) n ≡ 3( mod 4) ∞ ( − 1) k θ 2 k ∞ θ 2 k +1 � � ( − 1) k +1 = (2 k )! + i (2 k + 1)! = cos θ + i sin θ. k =0 k =0 � () Linear Algebra December 23, 2018 7 / 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend