eigenvalues and eigenvectors let a r n n be a matrix if r
play

Eigenvalues and Eigenvectors Let A R n n be a matrix. If R and v - PowerPoint PPT Presentation

Eigenvalues and Eigenvectors Let A R n n be a matrix. If R and v R n , v = 0, with Av = v , then we call 1. an eigenvalue of A , 2. v an eigenvector of A , 3. and ( , v ) an eigenpair of A Eigen, adjective: own,


  1. Eigenvalues and Eigenvectors

  2. Let A ∈ R n × n be a matrix. If λ ∈ R and v ∈ R n , v � = 0, with Av = λ v , then we call 1. λ an eigenvalue of A , 2. v an eigenvector of A , 3. and ( λ, v ) an eigenpair of A Eigen, adjective: “own”, “intrinsic”. First use in Linear Algebra in 1904 by David Hilbert. 1

  3. Let λ ∈ R and v ∈ R n with v � = 0. The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) Conclusion: λ is an eigenvalue of A if A − λ Id is a singular matrix. This is the case exactly then if det ( A − λ Id) = 0. 2

  4. Let λ ∈ R and v ∈ R n with v � = 0. The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) Conclusion: λ is an eigenvalue of A if A − λ Id is a singular matrix. This is the case exactly then if det ( A − λ Id) = 0. 2

  5. Let λ ∈ R and v ∈ R n with v � = 0. The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) Conclusion: λ is an eigenvalue of A if A − λ Id is a singular matrix. This is the case exactly then if det ( A − λ Id) = 0. 2

  6. Let λ ∈ R and v ∈ R n with v � = 0. The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) Conclusion: λ is an eigenvalue of A if A − λ Id is a singular matrix. This is the case exactly then if det ( A − λ Id) = 0. 2

  7. Let λ ∈ R and v ∈ R n with v � = 0. The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) Conclusion: λ is an eigenvalue of A if A − λ Id is a singular matrix. This is the case exactly then if det ( A − λ Id) = 0. 2

  8. Let A ∈ R n × n be a matrix. The characteristic polynomial of A is   a 11 − λ a 12 a 1 n . . . a 21 a 22 − λ . . . a 2 n     p A ( λ ) := det ( A − λ Id) = det . . . ...   . . . . . .     a n 1 a n 2 . . . a nn − λ For λ ∈ R we have p A ( λ ) = 0 ⇐ ⇒ det( A − λ Id) = 0 . The matrix A − λ Id is singular if and only if λ is a root of the characteristic polynomial of A . 3

  9. Let A ∈ R n × n and let p A be the characteristic polynomial. By the Fundamental Theorem of Algebra, we can write p A ( λ ) = ( λ − λ 1 ) · · · · · ( λ − λ n ) where the λ 1 , . . . , λ n ∈ C are the roots of the polynomial. (The leading term λ n has coefficient ( − 1) n .) The λ 1 , . . . , λ n are not necessarily distinct. The algebraic multiplicity µ a ( A , λ ) is the number how often an eigenvalue appears as a root of the characteristic polynomial. 4

  10. Let A ∈ R n × n and let p A be the characteristic polynomial. By the Fundamental Theorem of Algebra, we can write p A ( λ ) = ( λ − λ 1 ) · · · · · ( λ − λ n ) where the λ 1 , . . . , λ n ∈ C are the roots of the polynomial. (The leading term λ n has coefficient ( − 1) n .) The λ 1 , . . . , λ n are not necessarily distinct. The algebraic multiplicity µ a ( A , λ ) is the number how often an eigenvalue appears as a root of the characteristic polynomial. Generally, the roots of a characteristic polynomial may be complex numbers. (Fundamental Theorem of Algebra) 4

  11. Let A ∈ R n × n , λ ∈ C , and v ∈ C n , v � = 0. We call λ an eigenvalue of A , we call v an eigenvector of A , and ( λ, v ) an eigenpair of A if Av = λ v , The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) 5

  12. Let A ∈ C n × n , λ ∈ C , and v ∈ C n , v � = 0. We call λ an eigenvalue of A , we call v an eigenvector of A , and ( λ, v ) an eigenpair of A if Av = λ v , The following are equivalent: 1. ( λ, v ) is an eigenpair of A 2. Av = λ v 3. ( A − λ Id) v = 0 4. v ∈ ker ( A − λ Id) 6

  13. Example     2 − 3 1 2 − λ − 3 1 A = 1 − 2 1  , p A ( λ ) = det 1 − 2 − λ 1  ,       1 − 3 2 1 − 3 2 − λ We compute p A ( λ ) = − λ 3 + 2 λ 2 − λ = − λ ( λ − 1) 2 The roots of the polynomial p A are precisely 0 and 1. The eigenvalue 0 has algebraic multiplicity 1 and the eigenvalue 1 has algebraic multiplicity 2: µ a ( A , 0) = 1 , µ a ( A , 1) = 2 , 7

  14. Example What are the eigenvectors?       2 − 3 1 1 0  = 1 − 2 1 1 0  ,           1 − 3 2 1 0       2 − 3 1 − 1 − 1  = 1 − 2 1 0 0  ,           1 − 3 2 1 1       2 − 3 1 3 3  = 1 − 2 1 1 1  .           1 − 3 2 0 0 8

  15. Example � � � � cos( θ ) − sin( θ ) cos( θ ) − λ − sin( θ ) A = , p A ( λ ) = det , sin( θ ) cos( θ ) sin( θ ) cos( θ ) − λ We compute p A ( λ ) = sin( θ ) 2 + (cos( θ ) − λ ) 2 = sin( θ ) 2 + cos( θ ) 2 − 2 λ cos( θ ) + λ 2 = λ 2 − 2 λ cos( θ ) + 1 Any root of this polynomial must satisfy cos( θ ) 2 − 1 = ( λ − cos( θ )) 2 The left-hand side is negative unless θ is an integer multiple of π , so the eigenvalues are complex unless θ is an integer multiple of π . 9

  16. Example � � � � cos( θ ) sin( θ ) cos( θ ) − λ sin( θ ) A = , p A ( λ ) = det , − sin( θ ) cos( θ ) − sin( θ ) cos( θ ) − λ We compute p A ( λ ) = sin( θ ) 2 + (cos( θ ) − λ ) 2 = sin( θ ) 2 + cos( θ ) 2 − 2 λ cos( θ ) + λ 2 = λ 2 − 2 λ cos( θ ) + 1 Any root of this polynomial must satisfy − sin( θ ) 2 = ( λ − cos( θ )) 2 The left-hand side is negative unless θ is an integer multiple of π , so the eigenvalues are complex unless θ is an integer multiple of π . 10

  17. Example The eigenvalues are λ 1 = cos( θ ) + sin( θ ) i , λ 2 = cos( θ ) − sin( θ ) i . We check that � � � � � � cos( θ ) sin( θ ) 1 1 = λ 1 , − sin( θ ) cos( θ ) i i � � � � � � cos( θ ) sin( θ ) 1 1 = λ 2 . − sin( θ ) cos( θ ) − i − i 11

  18. The characteristic polynomial p A of A ∈ C n × n is defined as   a 11 − λ a 12 a 1 n . . . a 21 a 22 − λ a 2 n  . . .    p A ( λ ) := det ( A − λ Id) = det . . . ...   . . . . . .     a n 1 a n 2 a nn − λ . . . The scalar λ ∈ C is an eigenvalue of A if and only if it is a root of the characteristic polynomial. Can we use special structures of the matrix to find the eigenvalues? 12

  19. Example Let A ∈ C n × n be a triangular matrix.   a 11 − λ a 12 . . . a 1 n 0 a 22 − λ . . . a 2 n     p A ( λ ) = det ( A − λ Id) = det . . . ...   . . . . . .     0 0 . . . a nn − λ = ( a 11 − λ ) · ( a 22 − λ ) · · · · · ( a nn − λ ) The eigenvalues of a triangular matrix are the diagonal elements: � p A ( λ ) = ( a ii − λ ) . 1 ≤ i ≤ n 13

  20. How to find the eigenvectors? If λ ∈ C is an eigenvalue of A ∈ R n , then the eigenvectors for that eigenvalue are the solutions of the homogeneous linear system of equations ( A − λ Id) · v = 0 . Possible strategy: Bring A − λ Id into reduced row echelon form and determine the nullspace from there. 14

  21. Example   1 2 0 0 0 0 0 0 1 3 − 1 0    �  x 1 + 2 x 2 = 0   �     0 0 0 0 0 1  �    x ∈ R 6 ker = x 3 + 3 x 4 − x 5 = 0 �   0 0 0 0 0 0 �    �  x 6 = 0     � 0 0 0 0 0 0     0 0 0 0 0 0         2 0 0       − 1 0 0                             0 3 0         = span , ,       0 − 1 − 1                   0 0 − 3                       0 0 0   15

  22. Theorem A matrix A ∈ C n × n is nonsingular if and only if 0 is not an eigenvalue of A. 16

  23. Theorem A matrix A ∈ C n × n is nonsingular if and only if 0 is not an eigenvalue of A. Proof. The following are equivalent: 1. 0 is an eigenvalue of A 2. The matrix A − 0 Id has a non-trivial kernel. 3. The matrix A has a non-trivial kernel. 4. There exists v ∈ C n , v � = 0, with Av = 0. 5. The matrix A is singular. 16

  24. Theorem A matrix A ∈ C n × n is nonsingular if and only if 0 is not an eigenvalue of A. Proof. The following are equivalent: 1. 0 is an eigenvalue of A 2. The matrix A − 0 Id has a non-trivial kernel. 3. The matrix A has a non-trivial kernel. 4. There exists v ∈ C n , v � = 0, with Av = 0. 5. The matrix A is singular. 16

  25. Theorem A matrix A ∈ C n × n is nonsingular if and only if 0 is not an eigenvalue of A. Proof. The following are equivalent: 1. 0 is an eigenvalue of A 2. The matrix A − 0 Id has a non-trivial kernel. 3. The matrix A has a non-trivial kernel. 4. There exists v ∈ C n , v � = 0, with Av = 0. 5. The matrix A is singular. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend