a closer look at the hill estimator edgeworth expansions
play

A Closer Look at the Hill Estimator: Edgeworth Expansions and - PowerPoint PPT Presentation

A Closer Look at the Hill Estimator: Edgeworth Expansions and Confidence Intervals Erich HAEUSLER Johan SEGERS University of Giessen Tilburg University http://www.uni-giessen.de http://www.center.nl F A C U L T Y O F E C O N O M I C S A N D


  1. A Closer Look at the Hill Estimator: Edgeworth Expansions and Confidence Intervals Erich HAEUSLER Johan SEGERS University of Giessen Tilburg University http://www.uni-giessen.de http://www.center.nl F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 1/34

  2. INTRODUCTION � Ordered sample X 1: n ≤ · · · ≤ X n : n from Pareto-type cdf F � INTRODUCTION � PARETO MODEL � H ILL (1975) estimator for positive extreme-value index γ � CI’S AND TESTS � EDGEWORTH EXPANSIONS � MAIN RESULT � SIMULATIONS k H n ( k ) = 1 � CONCLUSION ˆ � log X n − k + i : n − log X n − k : n k i =1 � Simple and popular � Asymptotic properties well known � ˆ � H n ( k n ) d � k n − 1 − µ n → N (0 , 1) γ � intermediate sequence: k n → ∞ , k n = o ( n ) � asymptotic bias µ n = O (1) , depends on F and k n F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 2/34

  3. Confidence intervals and tests � Con fi dence intervals and hypothesis tests less studied � INTRODUCTION � PARETO MODEL � CI of nominal level 1 − α : � CI’S AND TESTS � EDGEWORTH EXPANSIONS � � 1 ± z � MAIN RESULT ˆ symmetric CI : √ H n ( k ) � SIMULATIONS � CONCLUSION k with � � 1 ∓ z � ˆ asymmetric CI : H n ( k ) √ k Φ( z ) = 1 − α/ 2 � Relevance: � Existence of moments � CI’s/tests for exceedance probabilities, quantiles,. . . [V ANDEWALLE 2004] F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 3/34

  4. Questions � Which CI to be preferred? � INTRODUCTION � PARETO MODEL � Yet other CI’s? � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Which k to use for which CI? � MAIN RESULT � SIMULATIONS � CONCLUSION � Comparisons between CI’s requires Edgeworth expansions � ˆ �� � � H n ( k ) = Φ( x ) + error term Pr k n − 1 ≤ x γ F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 4/34

  5. Related literature � One-term Edgeworth expansions in C HENG & P AN (1998) and � INTRODUCTION � PARETO MODEL C HENG & P ENG (2001) � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Useful for one-sided CI’s [C HENG & P ENG 2001] � MAIN RESULT � Insuf fi ciently accurate to analyse two-sided CI’s � SIMULATIONS � CONCLUSION � Expansions in terms of Gamma distributions [C HENG & DE H AAN 2001; G UILLOU & H ALL 2001] � Insuf fi ciently accurate for two-sided CI’s as well � Note: If µ n � = o (1) , then these CI’s are inconsistent � This is the case for AMSE-minimizing k n � Bias-corrected CI’s in F ERREIRA & DE V RIES (2004) F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 5/34

  6. For proper understanding. . . � Won’t talk about: � INTRODUCTION � PARETO MODEL � Bias reduction � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Data-driven methods to choose threshold � MAIN RESULT � Comparisons with other estimators � SIMULATIONS � CONCLUSION � Bayesian inference � Quantiles, exceedance probabilities � Other domains of attraction � Temporal dependence, non-stationarity, covariates � Will talk about: � Iid variables � Positive extreme-value index � Performance of various Hill-based CI’s/tests � Understanding of impact of intermediate sequence, nominal level, underlying distribution F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 6/34

  7. Outline � Inference in Pareto model � INTRODUCTION � PARETO MODEL � CI’s and hypothesis tests for extreme-value index � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Edgeworth expansions for normalized Hill estimator � MAIN RESULT � SIMULATIONS � CONCLUSION � Main result � Simulations � Conclusion F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 7/34

  8. PARETO MODEL � Cdf and pdf of Pareto( 1 /γ ): � INTRODUCTION � PARETO MODEL � CI’S AND TESTS 1 − x − 1 /γ , � EDGEWORTH EXPANSIONS G γ ( x ) = � MAIN RESULT � SIMULATIONS 1 � CONCLUSION γ x − 1 − 1 /γ p γ ( x ) = for x > 1 � Inference on γ > 0 from iid Y 1 , . . . , Y k ∼ p γ ? � Estimation � Testing � Con fi dence intervals F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 8/34

  9. Likelihood computations � Log-likelihood of γ given Y 1 , . . . , Y k � INTRODUCTION � PARETO MODEL � ˆ � CI’S AND TESTS k � � EDGEWORTH EXPANSIONS H k � MAIN RESULT � + constant ℓ k ( γ ) = log p γ ( Y i ) = − k γ + log( γ ) � SIMULATIONS � CONCLUSION i =1 k 1 ˆ � H k = log( Y i ) k i =1 � Score � ˆ � ℓ k ( γ ) = k H k ˙ γ − 1 γ � Fisher information � ∂ � = 1 I ( γ ) = Var γ ∂γ log p γ ( Y ) γ 2 F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 9/34

  10. MLE and deviance statistic � ˆ H k is suf fi cient statistic and MLE for γ � INTRODUCTION � PARETO MODEL � CI’S AND TESTS √ � EDGEWORTH EXPANSIONS d k ( ˆ → N (0 , γ 2 ) , H k − γ ) k → ∞ � MAIN RESULT � SIMULATIONS � CONCLUSION � Deviance statistic (likelihood ratio) at γ : � � ℓ k ( ˆ D k ( γ ) = 2 H k ) − ℓ k ( γ ) � ˆ � ˆ H k H k = 2 k γ − 1 − log γ d χ 2 → 1 , k → ∞ F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 10/34

  11. Hypothesis tests (1) � Test for H 0 : γ 0 = γ versus H 1 : γ 0 � = γ at nominal level 1 − α � INTRODUCTION � PARETO MODEL � z = z 1 − α/ 2 standard-normal quantile Φ( z ) = 1 − α/ 2 � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Reject H 0 : γ 0 = γ if T k ( γ ) > z 2 where � MAIN RESULT � SIMULATIONS � CONCLUSION Test Test statistic T k ( γ ) � ˆ � 2 H k − γ Wald k ˆ H k � ˆ � 2 H k − γ Score k γ � ˆ � ˆ H k H k Likelihood ratio D k ( γ ) = 2 k γ − 1 − log γ � � 1 + 1 � Bartlett-corrected LR D k ( γ ) 6 k F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 11/34

  12. Hypothesis tests (2) � Wald and score tests also Bartlett correctable � INTRODUCTION � PARETO MODEL � One-sided tests: similarly � CI’S AND TESTS � EDGEWORTH EXPANSIONS � Corresponding confidence intervals at nominal level 1 − α : � MAIN RESULT � SIMULATIONS � CONCLUSION { All γ > 0 for which H 0 : γ 0 = γ is not rejected at level 1 − α } F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 12/34

  13. CI’S AND TESTS FOR EVI � Pareto domain of attraction � INTRODUCTION � PARETO MODEL � cdf F has extreme-value index γ > 0 iff � CI’S AND TESTS � EDGEWORTH EXPANSIONS � MAIN RESULT 1 − F ( ux ) � SIMULATIONS � CONCLUSION Pr[ X/u > x | X > u ] = 1 − F ( u ) x − 1 /γ , → u → ∞ � Relative excesses over high thresholds are asymptotically Pareto( 1 /γ ) distributed F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 13/34

  14. Hill estimator � Heuristic: � INTRODUCTION � PARETO MODEL 1. Take large threshold u = X n − k : n � CI’S AND TESTS � EDGEWORTH EXPANSIONS 2. Relative excesses Y i : k = X n − k + i : n /X n − k : n for i = 1 , . . . , k � MAIN RESULT � SIMULATIONS 3. Pretend Y 1: k , . . . , Y k : k are order statistics from iid � CONCLUSION Pareto( 1 /γ ) sample � Pseudo-likelihood inference: H ILL (1975) k H n ( k ) = 1 log X n − k + i : n ˆ � k X n − k : n i =1 � Other interpretations [E MBRECHTS ET AL . 1997; B EIRLANT ET AL . 2004] F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 14/34

  15. Hypothesis tests and CI’s (1) � Fix k � INTRODUCTION � PARETO MODEL � Reject H 0 : γ 0 = γ at nominal level 1 − α if T n,k ( γ ) > z 2 � CI’S AND TESTS 1 − α/ 2 � EDGEWORTH EXPANSIONS � MAIN RESULT � SIMULATIONS Test statistic T n,k ( γ ) Test � CONCLUSION � ˆ � 2 H n ( k ) − γ Wald k ˆ H n ( k ) � ˆ � 2 H n ( k ) − γ Score k γ � ˆ � ˆ H n ( k ) H n ( k ) Likelihood ratio D n,k ( γ ) = 2 k − 1 − log γ γ � � 1 + 1 � Bartlett-corrected LR D n,k ( γ ) 6 k F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 15/34

  16. Hypothesis tests and CI’s (2) � Con fi dence intervals � INTRODUCTION � PARETO MODEL � CI’S AND TESTS { All γ > 0 for which H 0 : γ 0 = γ is not rejected } � EDGEWORTH EXPANSIONS � MAIN RESULT � SIMULATIONS � False rejection of H 0 : γ 0 = γ (type I error) � CONCLUSION Pr[ False rejection ] = α + error term ? � Not considered here but similar: false acceptance of wrong value (type II error) � Will depend on: � type of interval � intermediate sequence k = k n � nominal level � underlying distribution F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N EVA 2005, AUGUST 15 - p. 16/34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend