resistive plate chambers for time of flight
play

Resistive Plate Chambers for Time-of-Flight P. Fonte LIP/ISEC - PowerPoint PPT Presentation

Resistive Plate Chambers for Time-of-Flight P. Fonte LIP/ISEC Coimbra, Portugal. Compressed Baryonic Matter May 13 16, 2002 GSI Darmstadt/Germany CBM2002@GSI 1 Plan of the Presentation Main physical mechanisms Description of


  1. Resistive Plate Chambers for Time-of-Flight P. Fonte LIP/ISEC Coimbra, Portugal. Compressed Baryonic Matter May 13 – 16, 2002 GSI Darmstadt/Germany CBM2002@GSI 1

  2. Plan of the Presentation • Main physical mechanisms • Description of several. interesting devices • High frequency front-end electronics • Small segmented counters • Bidimensional position-sensitive single-gap counters • Large area • Practical difficulties to be addressed for future applications • Crosstalk • Ageing • Tails • Background • Rate capability CBM2002@GSI 2

  3. Timing RPCs – General features • Several (~4) thin (~ 0.3 mm) gas gaps Experimental • Atmospheric pressure operation • Both charge and time readout 1-2 ns • Offline correction for time-charge correlation. ∼ 100 ps Time-charge correlation Electronics Detector-related rise time (not yet fully understood) CBM2002@GSI 3

  4. Basic physical mechanisms 2 main questions: How can we reach 50 ps σ resolution in a gas counter? How is it possible to reach efficiencies of 75% in a 0.3 mm gas gap? N= average number of visible primary clusters i − ε = N e cathode = − ε = N ln( ) 1.4 Detection level independent from the cluster position Av. cluster density ⇒ exact timing anode >> 1.4/0.3 = 4.6 i CBM2002@GSI 4

  5. Time resolution-principles i cathode Monte Carlo i e α = vt i t 0 anode i i 0 [Mangiarotti and Gobbi, 2001] −τ − i0 ( ) ( ) − − τ −τ N ( e ) ( ) e v N e BesselI ( 1 2 , i0 N ) = N e BesselI ( 1 2 , e ) p i0 ( ) = p t ( ) e N − −τ N d ( 1 ) i0 N ( ) e N − ( 1 ) e τ τ = α v t n 0eff =i 0 d/(ev) CBM2002@GSI 5

  6. Time resolution-principles 1.4 K(N) (time jitter in units of α v) Standard deviation 1.2 Sigma (gaussian fit) 1 0.8 0.6 0.4 τ = α vt 0.2 1 gap 4 gaps 0 0 2 4 6 8 10 12 Average number of primary clusters (N) K N ( ) α =first Townsend coefficient σ t = α v v = electron’s drift velocity [Mangiarotti and Gobbi, 2001] CBM2002@GSI 6

  7. Signal properties 1-Signal shape cannot be changed by any linear system i e α v e α = = α vt vt � i t v t ≈ i Z s Linear system 0 0 Z(s) 2- α v can be easily measured ( ) = − Th 1 TDC ln( / ) Th Th s t t t 1 1 2 1 2 Th 2 t 2 10 y = 0.1967x - 9.6104 9 100 α v (GHz) Threshold 1 (mV) y = 20.69e 8.7043x 8 7 6 Experimental Experimental 5 10 70 80 90 100 -0.1 0 0.1 0.2 Applied field (kV/cm) Time difference (ns) CBM2002@GSI 7

  8. Time resolution-theory vs. measurements K N K N ( ( ) ) σ t σ t = = α v α v Single 0.3mm gap 120 Time-charge corrected 110 Time resolution (ps σ ) Uncorrected 100 0.75/( α v) 90 80 70 60 50 40 2.4 2.6 2.8 3 3.2 3.4 Applied Voltage (kV) Good agreement CBM2002@GSI 8

  9. The efficiency problem There should be at least one cluster i in the efficient region of the gap cathode Efficient region d d* G min ~10 6 Inefficient region 1 (too small avalanches) Isobutane (IB) anode Experimental 0.9 C2H2F4 (TFE) i TFE+IB+SF6 0.8 Methane Efficiency/gap 0.7 0.6 = − ε * ln(1 ) d L 0.5 ⇒ Lmin=5/mm ε = 0.4 efficiency 0.3 = clusters/mm L 0.2 ⇒ Lmin=1.6/mm > − ε L Lmin=ln(1 ) d 0.1 0 0 0.1 0.2 0.3 0.4 Gas gap (mm) CBM2002@GSI 9

  10. The efficiency problem-cluster density data 0.1 mm gap in C 4 H 10 C 2 F 4 H 2 F.Sauli [Finck, RPC2001] CERN 77-09 Lmin C 4 H 10 [Fisher, NIMA238] Experimental CH 4 Lmin 50 60 70 80 L(cm -1 ) No contribution from cathode (would also provide an effect to explain the t-q correlation) Calculation (HEED) [Riegler, RPC2001] Use this data CBM2002@GSI 10

  11. The efficiency problem (maybe solved) 1 i Isobutane (IB): L=9.5/mm cathode C2H2F4 (TFE): L=9/mm 0.9 TFE+IB+SF6: L=9/mm d d* 0.8 G 0 Methane: L=3/mm G min ~10 6 0.7 G 0 =4x10 14 d*/d anode 0.6 i 0.5 = − ε 0.4 d * ln(1 ) L ε = efficiency 0.3 = L clusters/mm 0.2 0 0.1 0.2 0.3 0.4 1 ( ) * G = G 1-d /d Gas gap (mm) 0 min Large values of G 0 must be assumed (much above the Raether limit of 10 8 ). Possible by an extremely strong avalanche saturation effect (space charge effect). CBM2002@GSI 11

  12. Some hardware CBM2002@GSI 12

  13. Timing RPCs – Small single counters (9 cm 2 ) 4x0.3 mm gaps [ Fonte 2000] Aluminum Glass -HV σ = − = 2 2 68 49 47 ps t Resolution of the reference counter ε = 99.5 % for MIPs (75%/gap) 3 σ (optimum operating point ⇒ 1% of discharges) CBM2002@GSI 13

  14. Timing RPCs – Array of 32 small counters [ Spegel et al, 2000 ] σ = 88 ± 9 ps ε = 97 ± 0.5 % Crosstalk < 1% (not tested for multiple hits) CBM2002@GSI 14

  15. Very high frequency front-end electronics Input signal based on commercial chips (experimental) i=i 0 e st s =8.7 GHz [ Blanco 2000] Pre-amplifier based on the INA-51063 chip (HP/Agilent) • 2.5 GHz bandwidth • 20 db power gain • 3 dB noise figure Realistic tests using chamber-generated signals 70 RPC at Threshold=12.5 fC 60 Time resolution per RPC at threshold=25 fC channel ( σ/√ 2) (ps) RPC at threshold=50 fC 50 Pulser at threshold=25 fC 40 30 20 Amplifier-discriminator-delay 10 module 10 ps σ resolution 0 10 100 1000 above 100 fC Signal fast charge per channel (fC) CBM2002@GSI 15

  16. Double readout 4-gaps glass-metal counter Edge effects [Finck, Gobbi et al, RPC2001] CBM2002@GSI 16

  17. Timing RPCs – Large counter Active area = 10 cm × 160 cm = 0.16 m 2 (400 cm 2 /electronic channel) 1,6 m HV 5 cm 4 timing channels Top view Cross section Ordinary 3 mm “window glass” Copper strips [Blanco 2001] CBM2002@GSI 17

  18. Timing RPCs – Large counter Time distribution Charge distribution 3 3 10 10 300 σ = 63.4 ps Events/20 ps ± 1.5 σ fit 0.5 pC ε ≈ 98 % Events / 20 fC 200 2 10 2 10 100 0 1 10 0 2 4 6 1 “300 ps tails” 10 0 10 0 2 4 6 8 Fast charge (pC) 0 10 -1000 -500-300 0 300 500 1000 Time difference (ps) σ σ 64 2 - 35 2 = 54 ps 64 2 - 35 2 = 54 ps 64 2 - 35 2 = 54 ps 64 2 - 35 2 = 54 ps = = Time resolution essentially independent from electrode size CBM2002@GSI 18

  19. Timing RPCs – Large counter 100% ε = 95 to 98 % 99% Time efficiency 98% 97% 96% Strip A 95% Strip B 94% Strips A+B 93% -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 [Blanco 2001] Center of the trigger region along the strips (cm ) 100 Time resolution (ps σ ) σ = 50 to 75 ps 90 80 70 60 50 40 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Center of the trigger region along the strips (cm ) No degradation when the area/channel was doubled to 800 cm 2 /channel CBM2002@GSI 19

  20. Timing RPCs – Large counter Position resolution along the strips 5.0 cm 8 400 400 400 6 Events/bin Events/bin Events/bin y=0.0709 x + 0.0001 ⇔ v=14 .1 cm/ns 350 350 350 4 ∆ t/2 (ns) 300 300 300 2 250 250 250 0 200 200 200 -2 Strip A 150 150 150 -4 100 100 100 Strip B -6 50 50 50 -8 0 0 0 -350 -350 -350 -300 -300 -300 -250 -250 -250 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 TDC bins TDC bins TDC bins 0.3 Very good linearity ( ± 1.4 cm) σ X = 1.2 cm Fit residuals (ns) 0.2 (0.75% of detector length) 0.1 0 [Blanco 2001] -0.1 -0.2 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 Center of the trigger region along the strips (cm) CBM2002@GSI 20

  21. Timing RPCs – single gap 2D-position sensitive readout (for small and accurate TOF systems) Precise construction Time signal HV 2 mm thick black glass lapped to ~1 µ m flatness metal box (no crosstalk) 300 µ m thick high ρ [Blanco 2002] glass disk (corners) X right X left 4 cm Well carved into the glass XY readout plane (avoid dark currents out left from the spacer) RC passive network 10 strips for each Y-strips coordinate (on PCB) at 4 mm pitch out right RC passive network X-strips (deposited on glass) CBM2002@GSI 21

  22. Timing RPCs – single gap Charge distribution Time distribution 3000 Events=26186 10 4 ineficiency 3 10 ± 1.5 σ fit ε = 75 % 2500 σ = 66.6 ps (54 ps) 3 σ Tails=1.9 % Events/bin 2000 Events/10ps 10 2 300ps Tails=0.36 % 2 10 1500 1000 10 0 1 10 0 500 1000 3 σ 500 0 0 10 0 200 400 600 800 1000 -1000 -500 -300 0 300 500 1000 Fast charge (a.u.) Time difference (ps) σ σ 67 2 - 40 2 = 54 ps 2 = 54 ps 2 = 54 ps 2 = 54 ps 2 - 2 - 2 - = = Time resolution of single-gap and 4-gap counters may be similar! CBM2002@GSI 22

  23. Timing RPCs – Single gap Efficiency and time resolution 100 85 Efficiency 90 80 Time resolution (ps σ ) Efficiency (%) 80 75 70 70 60 65 #2 (time only) 50 60 #3 (time + XY) Resolution 40 55 2.4 2.6 2.8 3 3.2 3.4 Applied Voltage (kV) σ = 50 to 60 ps ε = 75 to 80 % No influence from XY readout CBM2002@GSI 23

  24. Timing RPCs – single gap Bidimensional position resolution 1500 Events/0.5mm Trigger edge Chamber 1000 (3 mm) edge Events/mm 2 500 Y(mm) 0 -25 -20 -15 -10 -5 0 5 10 15 20 25 Position along X (mm) 1500 Events/0.5mm 4 mm strip pitch 1000 500 X (mm) 0 -25 -20 -15 -10 -5 0 5 10 15 20 25 Position along Y (mm) edges ≤ 3 mm ⇓ resolution ≤ 3 mm FWHM (strips=4mm) CBM2002@GSI 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend