mathematical and computational modelling of bulk
play

Mathematical and computational modelling of bulk ferromagnets Tom - PDF document

March 14-16, 2005: MULTIMAT, Paris Mathematical and computational modelling of bulk ferromagnets Tom a s Roub cek and Martin Kru z k Charles University & Academy of Sci., Prague


  1. ✬ ✩ March 14-16, 2005: MULTIMAT, Paris Mathematical and computational modelling of bulk ferromagnets Tom´ aˇ s Roub´ ıˇ cek and Martin Kruˇ z´ ık Charles University & Academy of Sci., Prague http://www.karlin.mff.cuni.cz/ ˜ roubicek/multimat.htm Steady-state problem, a microscopical level: (Landau and Lifshitz (1935), Brown (1962-66))  �  minimize E ε ( m, u ) − h · m d x     Ω   � � ϕ ( m ) + ε |∇ m | 2 �    where E ε ( m, u ) := d x     Ω   �  +1  R n |∇ u | 2 d x ,  2 I    subject to | m | = M s on Ω ,        R n ,  div( ∇ u − χ Ω m ) = 0 in I        R n ) , R n ) , u ∈ W 1 , 2 (I m ∈ L ∞ (Ω; I  i.e. minimization of anisotropy + exchange + magnetostatic + interaction energy; R n = magnetization, m : Ω → I R n → I u : I R=magnetostatic potential, ∇ u = demagnetizing field, ✫ ✪ M s = saturation magnetization (given). 1

  2. ✬ ✩ Meso-scopical level (DeSimone (1993), Pedregal (1994)...): zero-exchange energy limit: ε → 0 and “ m ε ⇀ ν ” ∗ �  minimize E ( ν, u ) − h · (id • ν ) d x,     Ω  � �  ϕ • ν d x + 1  R 3 |∇ u | 2 d x,  where E ( ν, u ) :=  2 Ω I � �  R 3 ,  subject to div ∇ u − χ Ω (id • ν ) = 0 on I        R n ) , u ∈ W 1 , 2 (I ν ∈ Y (Ω; S M s ) , where ν : Ω → rca( S M s ) is a Young measure, thus ν x ≡ ν ( x ) describes volume fractions of m at x , � [ f • ν ]( x ) := R 3 f ( m ) ν x (d m ), I R 3 → I R 3 =the identity id : I then id • ν =the macroscopical magnetization M , w (Ω; rca( S M s )) ∼ = L 1 (Ω; C ( S M s )) ∗ Y (Ω; S M s ) ⊂ L ∞ the set of all Young measures, R n of the radius M s . S M s =the ball in I A macro-scopical level (DeSimone (1993)): � �  ϕ eff ( M ) − h · M d x + 1 R 3 |∇ u | 2 d x, minimize   2 Ω I  R 3 ,  subject to div( ∇ u − χ Ω M ) = 0 on I � � ∗∗ , M =macroscopical magnetization. ✫ ϕ eff := ϕ + δ S M s ✪ 2

  3. ✬ ✩ Evolution on the microscopical level: Gilbert-Landau-Lifshitz model: ∂m ∂t = λ 1 m × h eff − λ 2 m × ( m × h eff ) , h eff := h − ϕ ′ ( m ) + ε ∆ m − 1 2 ∇ u , u again determined from div( ∇ u − χ Ω m ) = 0, ϕ ′ =the derivative of ϕ . The balance of magnetic energy E ε (test by h eff ): � � d E ε ( m, u ) h eff · ∂m | m × h eff | 2 d x ≤ 0 , = − ∂t d x = − λ 2 d t Ω Ω which expresses Clausius-Duhem’s inequality; the “precession” λ 1 -term does not dissipate energy, the λ 2 -term: a phenomenological “viscous” damping. The multiwell structure of ϕ | S M s : a nearly rate-independent hysteretic response. The width of the hysteresis loop in the m/h -diagram can thus be indirectly controlled by a shape of ϕ . Evolution on the macroscopical level: Rayleigh, Prandtl and Ishlinski˘ ı model (1887) or Preisach’s (1935) model (a continuum of activation thresholds) ✫ ✪ Visintin (2000) (a one-threshold dry-friction) 3

  4. ✬ ✩ Evolution on the mesoscopical level: • rate-independent dissipation (independent of frequency of h ) Assumption: the amount of dissipated energy within the phase transformation from one pole to the other = a single, phenomenologically given number (of the dimension J/m 3 =Pa) depending on the coercive force H c . identification of poles through a vectorial order parameter : L : S M s → △ L R L ; ξ i ≥ 0 , i = 1 , ..., L, � L △ L := { ξ ∈ I i =1 ξ i = 1 } . L i ( s ) is equal 1 if s is in i -th pole, i.e. s ∈ S M s is in a neighborhood of i -th easy-magnetization direction. λ = Λ ν := L • ν : mesoscopic order parameter � [ L • ν ]( x ) := S M s L ( s ) ν x (d s ) R L → I R + ̺ : I 0 ̺ ( ˙ λ ) = H c | ˙ λ | L : specific dissipation potential R L | · | L : a norm on I set of admissible configurations: � q = ( ν, λ ) ∈Y (Ω; S M s ) × L ∞ (Ω; I R L ) ; Q : = � λ ( x ) ∈ △ L , Λ ν = λ for a.a. x ∈ Ω ✫ ✪ 4

  5. ✬ ✩ Mielke’s dissipation distance: � � 1 ̺ (d λ λ ∈ C 1 � R L � δ ( λ 1 , λ 2 ) := inf d t ) d t ; [0 , 1]; I , 0 � λ ( t ) ∈ co L ( S M s ) , λ (0) = λ 1 , λ (1) = λ 2 . in our case: δ ( λ 1 , λ 2 ) = H c | λ 1 − λ 2 | L total dissipation distance: � D ( q 1 , q 2 ) := δ ( λ 1 , λ 2 ) d x, q i = ( ν i , λ i ) . Ω energy regularization (with α, ρ > 0):  ρ || λ || 2 R L ) , if λ ∈ W α, 2 (Ω; I  W α, 2 (Ω;I R L ) E ρ ( ν, λ ) := E ( ν ) + + ∞ otherwise,  Zeeman’s (external field) energy: � H ( t ) , q � = � ν, h ( · , t ) ⊗ id � ; Gibbs’ energy: G ( t, q ) := E ρ ( q ) − � H ( t ) , q � ✫ ✪ 5

  6. ✬ ✩ Mielke & Theil’s definition of an energetic solution : A process q = q ( t ) is stable if ∀ t ∈ [0 , T ]: ∀ ˜ q ∈ Q : G ( t, q ( t )) ≤ G ( t, ˜ q ) + D ( q ( t ) , ˜ q ) . A process q = q ( t ) satisfies the energy equality if ∀ t, s ∈ [0 , T ] , s ≤ t , G ( t, q ( t )) + Var( D , q ; s, t ) � �� � � �� � Gibbs’ ener- dissipated energy gy at time t � t � d H � = G ( s, q ( s )) − d t , q ( θ ) d θ , s � �� � � �� � Gibbs’ ener- reduced work of gy at time s external field q = q ( t ) ≡ ( ν ( t ) , λ ( t )) is an energetic solution if • ν ( t ) ∈ Y (Ω; S M s ) for all t ∈ [0 , T ], R L )), λ ∈ BV([0 , T ]; L 1 (Ω; I q ( t ) ∈ Q for all t ∈ [0 , T ], • it is stable and satisfies the energy equality, • q (0) = q 0 . ✫ ✪ 6

  7. ✬ ✩ The existence of an energetic solution: a semi-discretization in time by the implicit Euler scheme with a time step τ > 0, assuming T/τ an integer, and a sequence of τ ’s converging to zero, and such that, τ i /τ i +1 is integer. Then we put q 0 τ = q 0 , a given initial condition, and, for k = 1 , ..., T/τ we define q k τ recursively as a solution of the minimization problem  I ( q ) := G ( kτ, q ) + D ( q k − 1 Minimize , q )  τ  subject to q ≡ ( ν, λ ) ∈Q , If a solution (i.e. a global minimizer) is not unique, we just take an arbitrary one for q k τ . Then we define the piecewise constant interpolation:  q k  for t ∈ (( k − 1) τ, kτ ] , τ q τ ( t ) = q 0 for t = 0 .  A-priori estimates: λ τ ∈ L ∞ (0 , T ; H α (Ω; I R L ) ∩ L ∞ (Ω; I R L )) ∩ BV([0 , T ]; L 1 (Ω; I R L ) , ν τ ∈ L ∞ (0 , T ; L ∞ w (Ω; rca( S M s )) . G τ ∈ BV([0 , T ]) where G τ ( t ) := G ( t, q τ ( t )). ✫ ✪ 7

  8. ✬ ✩ q k τ minimizes I & triangle inequality for D q ) + D ( q k − 1 q ) − D ( q k − 1 ⇒ G ( kτ, q k , q k τ ) ≤ G ( kτ, ˜ , ˜ τ ) τ τ q ) + D ( q k ≤ G ( kτ, ˜ τ , ˜ q ) ⇒ stability of q τ : ∀ ˜ q ∈ Q : G ( t, q τ ( t )) ≤ G ( t, ˜ q ) + D ( q τ ( t ) , ˜ q ) . 1) stability of q k − 1 q := q k vs. ˜ τ τ τ minimizes I in comparison with q k − 1 2) q k τ ⇒ a two-sided energy inequality: � t � d H � − d t , q τ ( θ ) d θ s ≤ G ( t, q τ ( t )) + Var( D , q τ ; s, t ) − G ( s, q τ ( s )) � t � d H � ≤ − d t , q τ ( θ − τ ) d θ s Convergence for τ → 0 (Mielke-Francfort scheme): Step 1a : Selection of a subsequence (Helly’s theorem): G ∈ BV([0 , T ]) : ∀ t ∈ [0 , T ] : G τ ( t ) → G ( t ) R L )) : λ ∈ BV([0 , T ]; L 1 (Ω; I R L ) ∀ t ∈ [0 , T ] : λ τ ( t ) → λ ( t ) weakly in L 1 (Ω; I � d H � → P ∗ weakly in L 1 (0 , T ) and P τ := − d t , q τ P ( t ) := lim sup τ → 0 P τ ( t ). Step 1b : Selection of a finer net (Tikhonov theorem): ∀ t ∈ [0 , T ] ∃ a Young measure ν ( t ) ∈ Y (Ω; S M s ) ∃ { q τ ξ } ξ ∈ Ξ finer than the (sub)sequence { q τ } : ν τ ξ ⇀ ν t ∗ ✫ ✪ 8

  9. ✬ ✩ Step 2 : Stability of the limit process q : closedness of the graph of the stable-set mapping � � t �→ S := q ∈Q : ∀ ˜ q ∈Q : G ( t, q ) ≤ G ( t, ˜ q ) + D ( q, ˜ q ) . Step 3 : (Moore-Smith’) convergence of the stored energy: lim ξ ∈ Ξ G ( t, q τ ξ ( t )) = G ( t, q ( t )) for any t ∈ [0 , T ] so that G τ ξ ( t ) = G ( t, q ( t )) Step 4 : Upper energy estimate: limit passage in the 2 nd double-sided energy inequality � t ⇒ G ( t, q ( t )) + Var( D , q ; 0 , t ) ≤ G (0 , q 0 ) + P ∗ ( s )d s 0 � t ≤ G (0 , q 0 ) + P ( s ) d s 0 Step 5 : Lower energy estimate: a suitable partition 0 ≤ t ε 1 < t ε 2 < ...t ε k ε ≤ T , stability of q ( t ε q := q ( t ε i − 1 ) vs. ˜ i ) approximation of a Lebesgue integral by Rieman’s sums � t ⇒ G ( t, q ( t )) + Var( D , q ; 0 , t ) ≥ G (0 , q 0 ) + P ( s ) d s. ✷ 0 Remark: 1) P = P ∗ , 2) t �→ ν ( t ) weakly* measurable ⇐ a suitable a-posteriori selection (A.Mainik, PhD-thesis 2004) ✫ ✪ 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend