magnetoresistance in parallel fields
play

Magnetoresistance in parallel fields J.S. Meyer, University of - PDF document

Magnetoresistance in parallel fields J.S. Meyer, University of Minnesota A kk W(z) E x z B JSM, A. Altland, and B.L. Altshuler, PRL 89 , 206601 (2002); JSM, V.I. Falko, and B.L. Altshuler, cond-mat/0206024. ISSP August 18, 2003


  1. Magnetoresistance in parallel fields J.S. Meyer, University of Minnesota A kk’ W(z) E x z B JSM, A. Altland, and B.L. Altshuler, PRL 89 , 206601 (2002); JSM, V.I. Fal’ko, and B.L. Altshuler, cond-mat/0206024. ISSP – August 18, 2003

  2. Motivation I main focus of previous works: • orbital effect → perpendicular fields • parallel fields → spin effects F B purely 2 d system: no magnetoresistance due to the orbital effect in parallel fields ↔ 2DEGs A kk’ W(z) E x (subband structure) z B [Falko, J. Phys.: Cond. Matt. 2 , 3797 (’90); Mathur, Baranger, Phys. Rev. B 64 , 235325 (’01).] B B 2

  3. Motivation II AlGaAs/GaAs heterostructures: - clean interfaces and - weak z -dependence of impurity scattering z W(z) y x → z -inversion ( P z ) symmetry? magnetoresistance extremely sensitive to P z ⇒ probe properties of 2DEG special case: 1 occupied subband 3

  4. Outline Weak localization & magnetoresistance ⊲ ⊲ Spin effects ⊲ Berry-Robnik symmetry effect ⊲ Subband structure & the Cooperon matrix Results: ⊲ M > 1 ⊲ ⊲ M = 1: virtual processes ⊲ Conclusions 4

  5. REMINDER: Weak localization & magnetoresistance I consider return probability P ( r , r ) → sum over paths k with amplitude A j = a j e iϕ j 2 � � � � � P ( r , r ) = A j � � � � j multiple scattering due to the random phases ϕ j of different paths, interference terms in general average out 2 � � ⇒ classical result: P cl ( r , r ) = � � A j � � j � however: additional averaging-insensitive contribution due to (constructive) interference of time-reversed paths k | 2 | A k + A ¯ | A k | 2 + | A ¯ k | 2 + A ∗ k + A ∗ = k A ¯ k A k ¯ 4 | A k | 2 = thus, P ( r , r ) = 2 P cl ( r , r ) 5

  6. REMINDER: Weak localization & magnetoresistance II enhanced return probability ↔ reduced conductance corrections to classical Drude conductivity: e i φ r f -i φ e r i interference of time-reversed paths – Cooperon = + + + ... = + 1 � d 2 q C ( q , 0) C ( q , ω ) ∼ ⇒ δσ ∼ D q 2 − iω + 1 τ φ ∼ ln( τ/τ φ ) D diffusion constant τ φ phase coherence time elastic scattering time τ temperature-dependence of τ φ ∝ T − p ⇒ temperature-dependence of δσ ( T ) ∼ p ln T 6

  7. REMINDER: Weak localization & magnetoresistance III magnetic field breaks time-reversal invariance � A d r ]): (electrons pick up a phase factor exp[ ± i phase difference proportional to enclosed flux � � 2 A d r = 2 H d F = 2Φ ⇒ limits phase coherent propagation and suppresses interference phenomena ⇒ Cooperons short-ranged (‘massive’): 1 /τ φ → 1 /τ φ ( H ) = 1 /τ φ + 1 /τ H ⇒ negative magnetoresistance 7

  8. Parallel vs perpendicular fields relevant field scale: 1 flux quantum through typical area → ‘magnetic length’ l H perpendicular magnetic field: B φ 0 l l � H ⊥ l 2 ⊥ = φ 0 ⇒ l ⊥ = φ 0 /H ⊥ ⇒ 1 /τ H ⊥ ∝ H ⊥ parallel magnetic field: l φ 0 d B H � l � d = φ 0 l � = φ 0 / ( H � d ) ⇒ • different from conventional magnetic length • geometry dependent 1 /τ H � ∝ H 2 ⇒ � if 1 /τ H > 1 /τ φ : δσ ( H ) ∼ ln( τ/τ H ) ∼ α ln H ( α =1 , 2) 8

  9. Spin effects [REVIEW: cond-mat/0206024] • interplay of Zeeman splitting and spin-orbit coupling ( → weak antilocalization) −π π Aleiner & Fal’ko, PRL 87 , 256801 (2001) • spin-flip scattering at magnetic impurities → decoherence → suppression of WL magnetic field: polarization of impurities → no spin-flip → restoration of WL Vavilov & Glazman, PRB 67 , 115310 (2003) 9

  10. Berry-Robnik symmetry effect (quasi-)2 d system with disorder potential U and confining potential W in parallel magnetic field 1 2 m ( p − e A ) 2 + U ( x, y, z ) + W ( z ) H = gauge choice: A = − Hz e y + W + E F AlGaAs GaAs symmetry transformations: • time reversal ( T ) • z -inversion ( P z ) T P : z z T P z z p p - A e - A e iff U = U ( x, y ) and W ( z ) = W ( − z ), Hamiltonian invariant under T P z : T P z H = H ! Berry-Robnik (’86): unitary ↔ orthogonal spectral statistics Berry-Robnik symmetry effect = additional discrete symmetry compensates for time-reversal symmetry breaking 10

  11. Subband structure I consider system of finite width d : system splits into M subbands ( p z quantized) A kk’ W(z) E x z B 1 2 m ( p − A ) 2 + U ( x, y ) + W ( z ) H = • diagonalize z -dependent problem − ∂ 2 � � z 2 m + W ( z ) − ǫ k φ k ( z ) = 0 • rewrite H in subband basis � 1 � δ kk ′ + 1 2 m ( p y − A ) 2 2 mp 2 H kk ′ = x + U ( x, y ) + ǫ k kk ′ � dz φ k ( z ) z φ k ′ ( z ) e y ⇒ vector potential A kk ′ = − H no H � : subbands decoupled ⇒ each subband contributes separately to the WL correction:   M d 2 q C kk ( q ) ∝ M ln τ �  δσ ∼ �  τ φ k =1 11

  12. Subband structure II parallel magnetic field 1.) couples the subbands & 2.) breaks T -invariance coupling leads to a splitting of formerly degenerate Cooperon modes   M − 1 τ  δσ ∼ � ⇒ ln  τ k φ ( H ) k =0 H and 1 /τ k � =0 where 1 /τ k φ ( H ) = 1 /τ φ + 1 /τ k � = 0 H 1 /τ 0 H = . . . ? 2 X kk ′′ 2 X kk ′ ( C − 1 � ( q − 2 A kk ) 2 + � � q , 0 ) kk ′ = δ kk ′ + � D k D k ′ D k k ′′ 2 (1 − δ kk ′ ) D k + D k ′ where X kk ′ = 1 1+( ǫ kk ′ τ ) 2 A kk ′ A k ′ k ( D k diffusion constant of subband k , ǫ kk ′ = ǫ k − ǫ k ′ ) k k’ k k’’ k k k’ k 12

  13. Results ( M � = 1) 2 X kk ′′ 2 X kk ′ � ( C − 1 ( q − 2 A kk ) 2 + q , 0 ) kk ′ = � � δ kk ′ + √ D k D k ′ D k k ′′ a) P z -symmetry: 1 /τ 0 H = 0 one Cooperon mode is unaffected by the field! ⇒ δσ s ( H, T ) ∼ p ln T + 2( M − 1) ln H T P z ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� P T ���� ���� ���� ���� ������ ������ ������� ������� z ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� ���� ���� ���� ���� ������ ������ ������� ������� b) no P z -symmetry: 1 /τ 0 H � = 0 • asymmetric confining potential W ( z ) � = W ( − z ) 1 /τ 0 (as) ∝ H 2 H • z -dependent disorder δU ( x, y ; z )  H 2 H < H c 1 /τ 0 (imp)  ∝ H 1 /τ ′ H > H c  where 1 /τ ′ inter-subband scattering rate 13 δσ as ( H, T ) ∼ 2 M ln H ⇒

  14. Example: M = 2 for simplicity: D 0 = D 1 ≡ D � � D ( q − A ) 2 +2 X 01 + 1 2 X 01 C − 1 = 1 τ φ D ( q + A ) 2 +2 X 01 + 1 2 X 01 D τ φ where A = A 00 − A 11 if A = 0: 1 /τ (0) = 1 /τ φ and 1 /τ (1) = 1 /τ φ + 4 X 01 H H 1 /τ ( k ) � � = D A 2 if A � = 0: δ H at small H : δσ ( H ) − δσ (0) ∼ 2 X 01 τ φ (independent of A ) T - and H -dependence of the conductivity: H ∆σ (T) saturates H=H ❋ ❍ φ ∆σ ln (T) ~ T ● ● ■ ❍ ■ ∆σ 2 (H) ~ H ❒ ∆σ (H) ~ ln H ■ H=H φ ● ❒ asymmetry definition of characteristic fields H φ and H φ ∗ : D A 2 ( H φ ∗ ) = 1 /τ φ 4 X 01 ( H φ ) = 1 /τ φ note: W ( z ) = W ( − z ) ⇒ A = 0 14

  15. M = 1 occupied subband I A 00 pure gauge field ⇒ no effect ? residual magnetoresistance due to virtual processes → modifies electron dispersion p 2 + α p 2 p 2 y + β p 3 → y where α ∼ H 2 and β ∼ H 3 o u1 u2 o o u1’ u2’ o → effective vector potential 1 /τ H ∝ H 6 ⇒ (note that β = 0 in the P z -symmetric case!) z -dependent impurities: U ( x, y ) + δU ( x, y, z ) [Falko, J. Phys.: Cond. Matt. 2 , 3797 (’90).] → coupling to unoccupied subbands even in the absence of a magnetic field + inter−subband scattering unoccupied 2 H unoccupied 1 H H H δ U occupied 1 /τ H ∝ H 2 ⇒ ( H 2 → H 6 crossover at H M =1 ∝ τ ′− 1 / 4 ) c 15

  16. Experiments quantum dots: Zumbuhl et al., PRL 89 , 276803 (2002) → fit 1 /τ H ∼ a H 2 + b H 6 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend