magnetic force microscopy
play

Magnetic Force Microscopy Olivier Fruchart Institut Nel - PowerPoint PPT Presentation

Magnetic Force Microscopy Olivier Fruchart Institut Nel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Nel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/


  1. Magnetic Force Microscopy Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides/ http://perso.neel.cnrs.fr/olivier.fruchart/slides/

  2. WHY DO WE NEED MAGNETIC MICROSCOPY ? – Origins of magnetic energy Echange energy Magnetocrystalline anisotropy energy = − E J S . S 1 2 Ech 1 , 2 M = ∇ θ 2 A ( ) = θ sin 2 E K ( ) mc Hext Zeeman energy (enthalpy) Dipolar energy 2 1 1 = − µ E M . H S d = − µ d 0 E M . H 2 S Z 0 Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.2 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  3. WHY DO WE NEED MAGNETIC MICROSCOPY ? – – Magnetic characteristic length scales Typical length scale: Numerical values Bloch wall width  B λ = π A / K B λ = − λ B ≥ 2 3 nm 100 nm B Hard Soft ( ) 2 = θ + θ 2 e A d / dx K sin Exchange Anisotropy J/m 3 J/m Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.3 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  4. WHY DO WE NEED MAGNETIC MICROSCOPY ? – Magnetic domains Bulk material Mesoscopic scale Nanometric scale Numerous and complex Small number of domains, Magnetic magnetic domains simple shape single-domain Microfabricated dots Kerr magnetic imaging Co(1000) crystal – SEMPA A. Hubert, Magnetic domains A. Hubert, Magnetic domains R.P. Cowburn, Nanomagnetism ~ mesoscopic magnetism J.Phys.D:Appl.Phys.33, R1 (2000) Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.4 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  5. Why do we need microcopy ? What information may be sought Conditions and environment  Distribution of magnetization in  Temperature sample  Magnetic field  Direction & magnitude  Electrical current, light etc.  Depth resolution  Additional microscopies  Elemental resolution  Lateral resolution  Time resolution Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.5 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  6. Atomic Force Microscopy – Working principle Key elements of an Atomic Force Microscope (AFM)  Measures forces (vertical and lateral) between sample and tip Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.6 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  7. Atomic Force Microscopy – Cantilevers and tips Chip – Batch fabrication Cantilever Millimeters Full tip + apex 100μm  Price 10-200€/tip  Radius of curvature ≈ 5nm Images : Olympus catalog (http://www.olympus.co.jp/probe) Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.7 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  8. AFM – Many uses Measures Modes of operation  Topography  Static (deflection)  Mechanical properties • When contact is needed : electric, friction etc.  Electric properties  Dynamic (cantilever oscillation)  Piezoelectric properties • Less damage to sample and tip  Long-range forces (electrostatic, magnetic) • More sensitive  Micromanipulation & fabrication Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.8 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  9. Mechanical oscillator – Equations Mechanical excitation of cantilevers m ¨ z + Γ ˙ z + k z = F ( z ,t ) m Inertia Γ Damping Spring k F ( z ,t ) External force Notations j ω t F = 0 z ( t )= z 0 e Seek solutions for  Transfert function ω 0 = √ k H = z F = 1 1 Reference angular velocity m − ( ω 0 ) Q ( ω 0 ) + 1 k 2 ω + j ω Q = √ k m Quality factor Γ Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.9 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  10. Mechanical oscillator – Solutions Gain G =∣ H ∣= 1 1 7 Q = 10 / √ 2 √ [ 1 − ( 6 k ] 2 ω 0 ) 2 ( ω 0 ) 2 2 ω + 1 ω 5 Q 4 kG 3 ω r =ω 0 √ kG ( 0 )= 1 2 1 − 1 Peak at : 1 Q = 1 / √ 2 2 2Q kG (ω r )= Q 0 1 2 3 ω/ω 0 kG (∞)= 0 Dephasing Q>>1 1 − ( ω 0 ) 2 ω r ≈ω 0 ω 0.0 -0.5 cos φ= φ(ω r )≈−π/ 2 √ [ 1 − ( -1.0 ] 2 ω 0 ) 2 ( ω 0 ) 2 2 ω + 1 ω φ -1.5 ≈ √ 3 Δ ω r Q Q = 1 / √ 2 -2.0 ω 0 Q -2.5 Q = 10 / √ 2 φ( 0 )= 0 -3.0 0 1 2 3 φ(∞)=−π ω/ω 0 Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.10 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  11. Mechanical oscillator Tip-sample interaction treated as perturbation m ¨ z + Γ ˙ z + k z = F ( z ) F ( z )= F ( z 0 )+ ( z − z 0 )∂ z F with ω 0,eff =ω 0 ( 1 − 1 2k ∂ z F )  Mere renormalization : Phase shift Attractive force  Red shift δφ=− Q k ∂ z F Repulsive force  Blue shift  Forces monitored through phase shift ω exc =ω 0 Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.11 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  12. AFM – Tapping mode (topography) Resonance spectrum Full resonance spectrum Amplitude Amplitude 288 kHz 280 kHz 500 kHz 0 kHz Phase Resonance in tapping mode φ=0 ← Peak is cut Amplitude φ= - π 79 kHz 82 kHz Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.12 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  13. AFM – Close-loop versus open-loop operation Close-loop operation Feedback signal and setpoint: amplitude  Ex : map = topography with  Map at constant force setpoint on the amplitude Open-loop operation  Map The force along a predefined  Ex : map = magnetic stray field trajectory (plane, lift-height etc.) above sample Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.13 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  14. AFM – Tapping mode (topography) Images Height image (topography) Phase image Increasing pressure To notice  Non-contact part (bottom of image)  Phase does not reflect topography  Noise and phase depend on set point Sample : self-organized Anodized Alumina (synthesis L. Cagnon, Institut Néel) Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.14 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  15. AFM – Tip shadowing effects Schematics Examples Tip 1.8 x 2 microns Sample : M. Miron (Spintec) Lithography : S. Pizzini (Néel) Sample S. Y. Suck et al., APL95, 162503 (2009) Notice  Lateral (base) size is over-estimated with AFM  Shading, not convolution (no true retrieval possible)  Tips are less sharp for MFM due to magnetic coating Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.15 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  16. AFM – Tip effects ZIP disk, 400x400 nm SWCNT tip Usual tip Tip : A. M. Bonnot (Institut Néel) Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.16 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  17. MFM – Two-pass technique Second pass  Monitor long-range forces (magnetic, electrostatic) First-pass  Feedback ON  Monitor topography (height) and any other signal (phase etc.) Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.17 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

  18. Reminder about magnetostatics Calculate energy with magnetic dipoles Magnetic field arising from a magnetic dipole 3 [ − μ 1 ] μ 2 H d ( r )= μ 0 3 ( μ 1 .r ) r 2 4 π r r μ 1 F 2 ( r )=− ∇ E 1,2 =μ 0 ∇ ( H d . μ 2 ) F 2 ( r )=− ∇ E 1,2 =μ 0 ∇ ( H d . μ 2 ) F 2 ( r )=− ∇ E 1,2 E 1,2 =−μ 0 μ 2 .H d with Calculate energy with magnetic dipoles = − div ( H ) div ( M ) Analogy with electrostatics thanks to d   − − div [ m ( r ' )].( r ' r ) [ m ( r ' ). n ( r ' )].( r ' r )   ∫∫∫ 3 ∫∫ 2 = − + H ( r ) M d r ' d r '   d s 3 3 space sample π − π − 4 r r ' 4 r r '   ρ = ( r ) - M div[ m ( r ) ] Volume charges s E 1,2 =μ 0 σ . ϕ H d =− ∇ ϕ with σ = ( r ) M m ( r ) . n ( r ) Surface charges s Olivier Fruchart – Solemio School – Synchrotron Soleil – 2011-05-05 – p.18 Institut Néel, Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend