ly emission in low metallicity galaxies at z 2

Ly Emission in Low Metallicity Galaxies at z ~2 Dawn Erb - PowerPoint PPT Presentation

Ly Emission in Low Metallicity Galaxies at z ~2 Dawn Erb University of Wisconsin-Milwaukee Tokyo Spring Cosmic Ly Workshop March 27, 2018 Collaborators Danielle Berg University of Wisconsin-Milwaukee Ohio State University Naveen


  1. Ly 𝛃 Emission in Low Metallicity Galaxies at z ~2 Dawn Erb University of Wisconsin-Milwaukee Tokyo Spring Cosmic Ly 𝛃 Workshop March 27, 2018

  2. Collaborators Danielle Berg University of Wisconsin-Milwaukee Ohio State University Naveen Reddy (UC Riverside) Chuck Steidel (Caltech) Alice Shapley (UCLA) Max Pettini (Cambridge) Gabriel Brammer (STSci) Allison Strom (Carnegie) David Kaplan (UW-Milwaukee) Ryan Trainor (Franklin & Marshall)

  3. Ly 𝛃 emission stronger at low metallicity 0 . 030 Extreme KBSS 0 . 025 1 . 0 Green Peas 0 . 020 Relative number 0 . 015 0 . 5 0 . 010 Log ([O III]/H Ξ² ) 0 . 005 0 . 000 βˆ’ 60 βˆ’ 40 βˆ’ 20 0 20 40 60 80 100 120 140 160 180 0 . 0 Ly Ξ± equivalent width (˚ A) 1 . 0 0 . 9 βˆ’ 0 . 5 0 . 8 Extreme KBSS βˆ’ 1 . 0 0 . 7 Green Peas βˆ’ 1 . 8 βˆ’ 1 . 6 βˆ’ 1 . 4 βˆ’ 1 . 2 βˆ’ 1 . 0 βˆ’ 2 . 0 βˆ’ 1 . 5 βˆ’ 1 . 0 βˆ’ 0 . 5 0 . 0 0 . 5 Log ([N II]/H Ξ± ) Erb et al 2016 see also Trainor et al 2016

  4. Relationships between strength and line profile Ly 𝛃 equivalent width anti-correlated with velocity o ff set Double peaks unresolved at low resolution Erb et al 2014

  5. Diversity among Ly 𝛃 -emitters 3 arcsec HST WFC3 F160W Law et al 2012 Q2343-BX418 Q2343-BX660 M β˜… = 5 x 10 9 M β¦Ώ M β˜… = 2 x 10 9 M β¦Ώ SFR = 50 M β¦Ώ yr -1 SFR = 23 M β¦Ώ yr -1 SSFR = 18 Gyr -1 SSFR = 4 Gyr -1 12 + log(O/H) = 8.08 (T e ) 12 + log(O/H) = 8.13 (T e ) O32 = 9.66 O32 = 10.98 O/H, O32 from Steidel et al 2014

  6. Ly 𝛃 profile variations BX418 with VLT XSHOOTER 5 R=6200 Archival data, Terlevich et al 2015 4 18 LRIS 3 600-line grism Flux 16 2 14 1 12 0 Normalized Flux βˆ’ 2000 βˆ’ 1500 βˆ’ 1000 βˆ’ 500 0 500 1000 1500 2000 10 Velocity (km s βˆ’ 1 ) 8 6 BX418 4 BX660 2 0 βˆ’ 3000 βˆ’ 2000 βˆ’ 1000 0 1000 2000 3000 Velocity (km s βˆ’ 1 ) Erb et al 2018a, in prep

  7. Absorption lines trace variations in outflows 1 . 4 BX418 BX660 1 . 2 1 . 0 Normalized Flux 0 . 8 0 . 6 0 . 4 Si IV Ξ» 1394 Si IV Ξ» 1403 0 . 2 0 . 0 βˆ’ 2000 βˆ’ 1000 0 1000 2000 3000 Velocity (km s βˆ’ 1 ) Erb et al 2018a, in prep

  8. Absorption lines trace variations in outflows 1 . 4 1 . 4 1 . 2 1 . 2 Normalized Flux BX418 1 . 0 1 . 0 BX660 0 . 8 0 . 8 0 . 6 0 . 6 Si II Ξ» 1304 0 . 4 0 . 4 Si II Ξ» 1260 O I Ξ» 1302 0 . 2 0 . 2 0 . 0 0 . 0 βˆ’ 1500 βˆ’ 1000 βˆ’ 500 0 500 1000 1500 βˆ’ 1500 βˆ’ 1000 βˆ’ 500 0 500 1000 1500 Velocity (km s βˆ’ 1 ) Velocity (km s βˆ’ 1 ) 1 . 4 1 . 4 1 . 2 1 . 2 1 . 0 1 . 0 0 . 8 0 . 8 0 . 6 0 . 6 0 . 4 0 . 4 C II Ξ» 1334 Si II Ξ» 1527 0 . 2 0 . 2 0 . 0 0 . 0 βˆ’ 1500 βˆ’ 1000 βˆ’ 500 0 500 1000 1500 βˆ’ 1500 βˆ’ 1000 βˆ’ 500 0 500 1000 1500 Velocity (km s βˆ’ 1 ) Velocity (km s βˆ’ 1 ) Erb et al 2018a, in prep

  9. Analysis of larger sample underway 18 6 16 Q0142-BX165 Q0207-BX144 5 Flux density ( ¡ Jy) Flux density ( ¡ Jy) 14 W Ly α = 61 ˚ A W Ly α = 38 ˚ A 12 4 10 3 8 6 2 4 1 2 0 0 1200 1205 1210 1215 1220 1225 1230 1200 1205 1210 1215 1220 1225 1230 Rest Wavelength (˚ Rest Wavelength (˚ A) A) 5 10 Q0207-BX87 Q0207-BX74 Flux density ( ¡ Jy) Flux density ( ¡ Jy) 4 W Ly α = 78 ˚ A W Ly α = 102 ˚ A 8 3 6 2 4 C II λ 1334 1 2 0 0 1200 1205 1210 1215 1220 1225 1230 1200 1205 1210 1215 1220 1225 1230 Rest Wavelength (˚ Rest Wavelength (˚ A) A) Erb et al 2018a, in prep

  10. Implications and next steps Otherwise similar low metallicity galaxies have varying CGM properties: relevant to LyC escape 1 Low metallicity and high ionization necessary but not su ffi cient Expanding the sample: what can we learn from the most extreme objects? 2 New results from KCWI: what can we learn from integral field spectroscopy?

  11. Low metallicity and high ionization at z=1.85 1 Berg et al 2018, arxiv:1803.02340

  12. Ly 𝛃 emission does not require outflows 1 . 6 Average Absorption Low Ionization 1 . 4 High Ionization Normalized Flux OIII] Ξ» 1660 OIII] Ξ» 1666 1 . 2 1 . 0 0 . 8 0 . 6 βˆ’ 1000 βˆ’ 500 0 500 1000 Velocity km s βˆ’ 1 See also Jaskot et al 2017 Berg et al 2018, arxiv:1803.02340

  13. Narrowband Ly 𝛃 imaging with HST Ly 𝛃 + continuum Continuum-subtracted Ly 𝛃 O ff -line continuum Spectroscopic slit losses ~30% Ly 𝛃 equivalent width 190 Γ… , escape fraction ~10% Di ff erential lensing magnification? Erb et al 2018b, in prep

  14. Spatially extended Ly 𝛃 Erb et al 2018b, in prep

  15. Q2343-BX418 with KCWI preliminary 2 30 kpc Erb et al 2018c, in prep

  16. Q2343-BX418 with KCWI 30 kpc Erb et al 2018c, in prep

  17. Mapping the Ly 𝛃 peak ratio Erb et al 2018c, in prep

  18. Mapping the Ly 𝛃 peak ratio βˆ† v peak = 600 km s βˆ’ 1 Erb et al 2018c, in prep

  19. Mapping the Ly 𝛃 peak ratio βˆ† v peak = 450 km s βˆ’ 1 Erb et al 2018c, in prep

  20. Mapping the Ly 𝛃 peak separation Erb et al 2018c, in prep

  21. What does it mean? Spatial variations in Ly 𝛃 profile depend on - column density and covering fraction of neutral hydrogen - variations in outflow velocity, including projection e ff ects Full modeling required

  22. Summary Q2343-BX418 Ly 𝛃 emission stronger at low metallicity, Q2343-BX660 40 SL2S J0217 but CGM properties vary widely 30 Normalized Flux Important for LyC escape 20 Low metallicity and high ionization 10 necessary but not su ffi cient 0 βˆ’ 3000 βˆ’ 2000 βˆ’ 1000 0 1000 2000 3000 Velocity (km s βˆ’ 1 ) Next steps: Quantify diversity in low mass samples Expand dynamic range to most extreme objects Map the CGM with emission Ly 𝛃

Recommend


More recommend