low emittance muon beams from positrons
play

LOW EMITTANCE MUON BEAMS FROM POSITRONS Francesco Collamati - PowerPoint PPT Presentation

LOW EMITTANCE MUON BEAMS FROM POSITRONS Francesco Collamati (INFN-Roma) 29.09.2017 1 Outline Introduction: Why a muon collider Proposal for a novel technique for direct muon production Target choice & accelerator scheme


  1. LOW EMITTANCE MUON BEAMS FROM POSITRONS Francesco Collamati (INFN-Roma) 
 29.09.2017 1

  2. Outline • Introduction: Why a muon collider • Proposal for a novel technique for direct muon production • Target choice & accelerator scheme • Multi-turn simulations • Muons’ emittance • Experimental tests • Conclusion and perspectives 2

  3. Why a Muon Collider? 3

  4. Why a Muon Collider? • PROs: 3

  5. Why a Muon Collider? • PROs: • Muons are ~200 times heavier than electrons: 3

  6. Why a Muon Collider? • PROs: • Muons are ~200 times heavier than electrons: • Accelerator : • No synchrotron radiation (limit of circular e + e - colliders) 
 ➜ much higher energies are reachable 
 (~3TeV in 4km circumference) 3

  7. Why a Muon Collider? • PROs: • Muons are ~200 times heavier than electrons: • Accelerator : • No synchrotron radiation (limit of circular e + e - colliders) 
 ➜ much higher energies are reachable 
 (~3TeV in 4km circumference) • Much smaller energy spread of the beam 
 ➜ much higher energy resolution • Precise measurements and access to new resonances 3

  8. Why a Muon Collider? • PROs: • Muons are ~200 times heavier than electrons: • Accelerator : • No synchrotron radiation (limit of circular e + e - colliders) 
 ➜ much higher energies are reachable 
 (~3TeV in 4km circumference) • Much smaller energy spread of the beam 
 ➜ much higher energy resolution • Precise measurements and access to new resonances • Physics : • Higgs coupling ∝ m 2 
 ➜ Much bigger production of Higgs boson (also s-channel) 3

  9. Why a Muon Collider? 4

  10. Why a Muon Collider? • CONs: 4

  11. Why a Muon Collider? • CONs: • Muons decay in 2.2 μ s ! • The whole chain (generation, acceleration, interaction) must be very quick ! 4

  12. Why a Muon Collider? • CONs: • Muons decay in 2.2 μ s ! • The whole chain (generation, acceleration, interaction) must be very quick ! • Traditional muon production scheme leads to large emittance beams: 
 p + target ➝ π /K ➝ μ • Muons are produced with a variety of angles and energies (P μ ~100MeV/c) • Cooling needed! 
 ➜ tradeoff monochromaticity/luminosity 4

  13. Direct muon production N o v e l A p p r o a c h 5

  14. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - 45GeV μ - ~22GeV 5

  15. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - ~22GeV 5

  16. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - • Low emittance possible: 
 ~22GeV θ μ is tunable with √ s, and is very small close to the threshold 5

  17. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - • Low emittance possible: 
 ~22GeV θ μ is tunable with √ s, and is very small close to the threshold • Small energy spread : depends on √ s, small at threshold (210MeV) 5

  18. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - • Low emittance possible: 
 ~22GeV X COOLING θ μ is tunable with √ s, and is very small close to the threshold • Small energy spread : depends on √ s, small at threshold (210MeV) 5

  19. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - • Low emittance possible: 
 ~22GeV X COOLING θ μ is tunable with √ s, and is very small close to the threshold • Small energy spread : depends on √ s, small at threshold (210MeV) • Low background : low emittance allows for good luminosity with reduced muon flux • Reduced losses from decay: asymmetric collision allows high boost (and both muons’ collection) 5

  20. Direct muon production N o v e l A p p r o a c h μ + ~22GeV Lab. Frame • Exploiting the interaction of accelerated 
 positrons on fixed target: e + e − → µ + µ − θ μ e + e - • Advantages: 45GeV μ - • Low emittance possible: 
 ~22GeV X COOLING θ μ is tunable with √ s, and is very small close to the threshold • Small energy spread : depends on √ s, small at threshold (210MeV) • Low background : low emittance allows for good luminosity with reduced muon flux • Reduced losses from decay: asymmetric collision allows high boost (and both muons’ collection) • Disadvantages: • Rate : much smaller cross section wrt protons ( μ b vs mb) 5

  21. Direct muon production N o v e l A p p r o a c h mrad q µ max 2 1.6 s (e + e - à µ + µ - ) 1.2 0.8 r s µ b = 4 m e θ MAX 4 − m 2 0.4 µ µ s 1 0 0.8 44 46 48 50 52 54 56 58 60 E beam (e + ) GeV 0.6 0.4 0.2 r.m.s. ( E µ ) /E µ 0.3 0 0.25 44 46 48 50 52 54 56 58 60 E beam (e + ) GeV 0.2 0.15 √ s 0.1 r s 4 − m 2 ∆ E = 0.05 µ 2 m e 0 44 46 48 50 52 54 56 58 60 E beam (e + ) GeV 6

  22. Target choice 7

  23. Target choice • Due to low cross section, the target choice 
 is crucial: N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) 7

  24. Target choice • Due to low cross section, the target choice 
 is crucial: N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) • Criteria: 7

  25. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ if L was a e + x drift x 1 = L x 0 ’ x 0 x 0 ’ x’ q µ max x ’ max = Muons produced µ +/ + / - - uniformly x max = L x ’ max along target 7

  26. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ • ⬆ rate ➜ high Z& ρ if L was a e + x drift x 1 = L x 0 ’ x 0 x 0 ’ x’ q µ max x ’ max = Muons produced µ +/ + / - - uniformly x max = L x ’ max along target 7

  27. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ • ⬆ rate ➜ high Z& ρ if L was a e + x drift x 1 = L x 0 ’ x 0 • ⬇ positron loss (brem.+bhabha) 
 x 0 ’ (recirculation) ➜ low Z x’ q µ max x ’ max = Muons produced µ +/ + / - - uniformly x max = L x ’ max along target 7

  28. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ • ⬆ rate ➜ high Z& ρ if L was a e + x drift x 1 = L x 0 ’ x 0 • ⬇ positron loss (brem.+bhabha) 
 x 0 ’ (recirculation) ➜ low Z x’ • Very intense e + source (10 18 e + /s @T) q µ max x ’ max = Muons produced µ +/ + / - - uniformly x max = L x ’ max along target 7

  29. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ • ⬆ rate ➜ high Z& ρ if L was a e + x drift x 1 = L x 0 ’ x 0 • ⬇ positron loss (brem.+bhabha) 
 x 0 ’ (recirculation) ➜ low Z x’ • Very intense e + source (10 18 e + /s @T) q µ max x ’ max = Muons • Possible choices: produced µ +/ + / - - uniformly x max = L x ’ max along target 7

  30. Target choice • Due to low cross section, the target choice 
 is crucial: µ +/- e + beam e + L N µµ = N e + ρ e − L σ ( e + e − → µ + µ − ) e + on • Criteria: target • ⬇ emittance ➜ thin target x’ x 1 ’ = x 0 ’ • ⬆ rate ➜ high Z& ρ if L was a e + x drift x 1 = L x 0 ’ x 0 • ⬇ positron loss (brem.+bhabha) 
 x 0 ’ (recirculation) ➜ low Z x’ • Very intense e + source (10 18 e + /s @T) q µ max x ’ max = Muons • Possible choices: produced µ +/ + / - - • Heavy materials (Cu…) ⇔ thin target ( ε μ ∝ L) uniformly x max = L x ’ max along Small ε μ , but high ρ brings to MS and e + loss • target 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend