performance of the ttf photoinjector for fel operation
play

Performance of the TTF Photoinjector for FEL Operation S. - PDF document

Performance of the TTF Photoinjector for FEL Operation S. Schreiber, DESY The Physics & Applications of High Brightness Electron Beams Chia Laguna, Sardinia, July 1-6, 2002 & Ch. Gerth, K. Honkavaara, M. Hning, Ph. Piot, J. Menzel,


  1. Performance of the TTF Photoinjector for FEL Operation S. Schreiber, DESY The Physics & Applications of High Brightness Electron Beams Chia Laguna, Sardinia, July 1-6, 2002 & Ch. Gerth, K. Honkavaara, M. Hüning, Ph. Piot, J. Menzel, E. Schneidmiller, M. Yurkov Overview of the TESLA Test Facility Injector and Linac for FEL operation Performance of the injector and properties of the beam delivered to the undulator -> transverse emittance -> bunch length -> energy spread Conclusions

  2. The TESLA Collaboration RWTH Aachen Institute of Physics Helsinki BESSY Berlin Frankfurt University IN2P3/IPN Orsay HMI Berlin GKSS Geesthacht IHEP BeijingTsinghua University IN2P3/LAL Orsay MBI Berlin DESY Hamburg and Zeuthen DSM/DAPNIA Saclay TU Berlin Hamburg University Yerevan Physics Institute TU Darmstadt FZK Karlsruhe TU Dresden Rostock University Wuppertal University T E S L A INFN Frascati INFN Legnaro INFN Milano INFN Roma 2 Argonne Nationala Lab. Inst. of Nuclear Physics Cracow FNAL Batavia JINR Dubna PSI Villingen Univ. of Mining & Metallurgy Cracow Cornell University MEPhI Moscow Soltan Inst. for Nuclear Studies Otwock-Swierk TJNL Jefferson Lab. INP Novosibirsk Polish Acad. of Science Warsaw UCLA Los Angeles BINP Protvino Polish Atomic Energy Agency Warsaw IHEP Protvino Warsaw University INR Troitsk

  3. The TTF Photoinjector Design Parameters TTFL(a) TTFL(b) TTF-FEL RF frequency of acc. structures 1.3 GHz Repetition rate 10 Hz Pulse train length 800 us Pulse train current 8 mA 9 mA 9 mA Bunch frequency 1 MHz 2.25 MHz 9 MHz Bunch charge 8 nC 4 nC 1 nC Bunch length (rms) 1 mm 1 mm 0.8 mm Emittance norm, x,y 20 um 10 um 2 um Energy spread (rms) 0.1 % Injection energy 20 MeV Beam Diagnostics RF-Gun Booster e- 1300 MHz Energy spread TESLA 9-cell superconducting 1 1/2 Cells Bunch length cavity 15 MV/m up to 50 MV/m Emittance Kryomodule Charge Laser Matching Section Bunch Compressor UV (262 nm) Match beam to linac lattice Compress down to 1 mm Cathode System mode-locked HOM experiments pulse train oscillator Cs2Te, QE > 0.5 % synchronized to rf S. Schreiber 15 Jun 2001

  4. TTF RF Gun Operating Parameters FNAL/INFN LASA/MBI/DESY In operation since Dez. 1998 --> about 14 000 h and 5 E7 shots RF input coupler RF gun body Solenoids Cathode System Laser Input Port Diagnostics (BPM, ICT, Faraday Cup, Screen) Frequency 1.3 GHz Number of cells 1 1/2 5/4 λ /4 Half Cell length RF Coupling transverse Gradient on Cathode 35...42 MV/m Repetition Rate 1 ... 5 Hz 900 µ s RF Pulse Length Klystron Power 2.7 MW @ 39 MV/m Av. Dissipated Power 12 kW @ 5 Hz Cathode Cs2Te or CsKTe S. Schreiber 15-Jun-2002

  5. The Laser System for the TTF Photoinjector Single Pass Amplifier Chain Mode Locked Pulse Picker (Nd:YLF) Pulse Train Oscillator (1 MHz, 800 Pulses) UV Generator with Relay Imaging System (PTO) (2.25 MHz, 1800 Pulses) LBO BBO Resonator Length Feedback Fast Current Fast Current Fast Current Control Control Control Phase Feedback Phase Fast Feedback Loop Reference Control of Single Pulse Energy from TTFL Master and Train Flatness Image to the RF Gun Shot-to-Shot Based on Nd:YLF laser material Optimizer (long fluoresc. lifetime, low thermal lensing) Locked to the TTF RF: phase stability < 1 ps (< 0.5 dg of 1.3 GHz rf) Generates a 800 µ s long pulse train in the UV (up to 10 Hz rep rate, 1 MHz or 2.25 MHz within train) UV single pulse energy 25 µ J (1 µ J required for 1 nC) Energy stability < 5 % peak-peak within pulse train and < 10 % peak-peak from shot-to-shot Uses relay imaging to create a transverse flat-top profile and to enhance the pointing stability < 2 urad Pulse length in UV sigma = (7.1 ± 0.6) ps S. Schreiber 16-Oct-2000

  6. Scope Trace of the Laser Pulse Train 800 us Phase of Laser Pulses 1 ps with respect to Reference RF (1.3 GHz) Photodiode Signal of Laser Pulse Train after Amplification (1 or 2.25 MHz) Photodiode Signal of Laser Pulse Train in the Oszillator (54 MHz) 18.5 ns 1 or 0.4 us

  7. Cathode System INFN Milano LASA DESY Cs Te cathode: high quantum efficiency > 0.5 % 2 A load lock system allows to change cathodes without breaking the UHV vacuum -10 Vacuum better than 10 mbar required to maintain high quantum efficiency Transport Chamber with a stack of 4 cathodes Gun Connection Loading Chamber The cathodes are prepared off site in Milano and transported under UHV condition to DESY Preparation Chamber Another Transport Chamber S. Schreiber 08-Apr-2001

  8. Overview of the TESLA Test Facility Linac 4 MeV 16.5 MeV 120 MeV 250 MeV Experiments Superconsducting TESLA with FEL Radiation Accelerating Modules Booster RF-Gun Undulator Bunch Bunch Compressor Compressor Laser Beam Dump

  9. Remark concerning the design The TTF injector has been designed for TESLA applications: -> design fulfills requirements for a TESLA type beam to test the superconducting accelerating structures To drive the TTF-FEL phase 1, demands are tighter: the FEL needs 1. high peak current > 0.5 kA 2. small energy spread < 0.1 % 3. small transverse emittance < 6 um The rf gun source can do 2. and 3., but not 1. -> the peak current is limited by space charge effects That’s why bunch compression after acceleration is required Do have the compression working correctly, the rf induced energy spread must be small -> short bunches of 0.8 mm length required before acceleration But this is shorter than the rf gun can do keeping at the same time the transverse emittance small

  10. RMS Bunch Length after Booster measured as a function of rf gun phase with a streak camera (Photonetics) Charge: 1 nC, nominal rf gun settings A14 PARMELA Data ASTRA Simulations for laser pulse length σ L = 10 ... 14 ps A12 (indicated by the number) Example of a laser pulse A10 Intensity (arb. units) P16 P14 Time (ps) P12 laser pulse length 7 ± 1 ps nominal phase Including measurements for larger bunch charges: 1 nC -> 3.2 mm 3 nC -> 4.3 mm S. Schreiber 28-Jun-2002

  11. Energy Spread Measurement TTFL Injector Spectrometer 90 95 Pixel 100 105 110 115 16.94 17.00 17.06 17.12 17.18 17.24 17.30 Energy (MeV) 17 MeV 800 σ = 22.1 ± 2.7 keV Intensity (a.u.) 600 E 400 200 0 − 200 − 400 0 0.6 1.2 1.8 2.4 3.0 3.6 ∆ Energy (MeV) beam profile measured using optical transition radiation from a gaussian fit to the core: σ = 22.1 ± 2.7 keV E σ /E = 0.13 ± 0.02 % E tail: up to 50 keV S. Schreiber 15-Jun-2001

  12. Expected longitudinal phase space at the undulator from simulation Ph. Piot Simulation Energy (MeV) Time (ps) Simulation Current (kA) Time (ps) We expect a sharp peak and a long tail The peak sharpness reflects the uncorrelated energy spread from the injector of ~20 keV

  13. Bunchlength measurement with a streak camera syncrotron light from the last dipole has been measured with a fast streak camera (FESCA 200 Hamamatsu) 50 averaged profile 45 40 width (sigma) 650+/- 100 fs Intensity (arb. units) 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 Time (ps) for comparison: profile obtained with tomographic method (M. Hüning) Estimated peak current: 0.6 kA 30 % of the charge of 3 nC is in the peak S. Schreiber 29-Jun- 2002

  14. Quadscan for Different Solenoid Fields Charge 1 nC, Energy 17.2 MeV, exit booster Sol. 1/2 emit. x emit. y (mm mrad) 200/104 A 4.19 +- 0.13 4.58 +- 0.15 220/104 A 3.02 +- 0.17 3.47+- 0.12 beta (m) = 0.39+-0.03 / 0.51 +- 0.02 alpha = 0.78 +- 0.06 / 0.6 +- 0.04 240/104 A 4.08 +- 0.57 4.52 +- 0.47 2.5 2 1.8 2 1.6 1.5 1.4 1 1.2 Horizontal Beamsize (mm) Vertical Beamsize (mm) − 2 − 1 0 1 − 2 − 1 0 1 1.6 1.6 1.4 1.4 1.2 1.2 1 1 − 2 − 1 0 1 − 2 − 1 0 1 2 2 1.5 1.5 1 1 0.5 0.5 −3 −2 −1 0 1 2 −3 −2 −1 0 1 2 Quadrupole Current (A) S. Schreiber 15-Jun-2001

  15. Development of the emittance along the linac rf gun parameters: 1 nC, 40 MV/m, spot size r=1.5 mm,phase 40 dg, Solenoids 0.105/0.088 T, booster 12 MV/m norm. emit. [mrad mm]: 3.47 +/ − 0.12 norm. emit. [mrad mm]: 3.02 +/ − 0.17 1.8 1.8 1.6 1.6 [mm] [mm] 1.4 1.4 σ x σ y 1.2 1.2 1 1 0.8 0.8 − 3 − 2 − 1 0 1 2 − 3 − 2 − 1 0 1 2 quadrupole current [A] quadrupole current [A] After the booster: 3.0 (3.2) +- 0.5 mm mrad hor. (vert) norm. emit. [mrad mm]: 8.00 +/ − 1.60 norm. emit. [mrad mm]: 9.17 +/ − 0.18 2 1.2 1 1.5 0.8 σ x [mm] σ y [mm] 1 0.6 0.4 0.5 0.2 0 0 − 40 − 20 0 20 40 − 40 − 20 0 20 40 quadrupole current [A] quadrupole current [A] After acceleration to 137 MeV: 8 (9) +- 2 mm mrad hor. (vert) norm. emit. [mrad mm]: 7.29 +/ − 1.15 norm. emit. [mrad mm]: 11.52 +/ − 5.81 0.7 1.2 1.0 0.6 σ x [mm] σ y [mm] 0.5 0.8 0.6 0.4 0.4 0.3 0.2 0.2 − 10 − 5 0 5 10 − 10 − 5 0 5 10 quadrupole current [A] quadrupole current [A] After acceleration to 246 MeV: 11 +- 6 (7 +- 2) mm mrad hor. (vert)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend