local and union page numbers
play

Local and Union Page Numbers Torsten Ueckerdt Laura Merker - PowerPoint PPT Presentation

Local and Union Page Numbers Torsten Ueckerdt Laura Merker Karlsruhe Institute of Technology Karlsruhe Institute of Technology Graph Drawing 2019 September 20, 2019 Pruhonice book embedding ( , P ) linear vertex ordering


  1. Local and Union Page Numbers Torsten Ueckerdt ∗ Laura Merker Karlsruhe Institute of Technology Karlsruhe Institute of Technology Graph Drawing 2019 September 20, 2019 Pruhonice

  2. book embedding ( ≺ , P ) ⊲ linear vertex ordering ≺ � spine ordering ⊲ edge partition P = { P 1 , . . . , P k } � pages y u x v ⊲ u ≺ x ≺ v ≺ y, uv ∈ P i , xy ∈ P j ⇒ i � = j � each page crossing-free K 5 K 3 , 3

  3. book embedding ( ≺ , P ) ⊲ linear vertex ordering ≺ � spine ordering ⊲ edge partition P = { P 1 , . . . , P k } � pages y u x v ⊲ u ≺ x ≺ v ≺ y, uv ∈ P i , xy ∈ P j ⇒ i � = j � each page crossing-free K 5 K 3 , 3 k -local book embedding: each vertex on at most k pages

  4. book embedding ( ≺ , P ) ⊲ linear vertex ordering ≺ � spine ordering ⊲ edge partition P = { P 1 , . . . , P k } � pages y u x v ⊲ u ≺ x ≺ v ≺ y, uv ∈ P i , xy ∈ P j ⇒ i � = j � each page crossing-free K 5 K 3 , 3 k -union embedding: each page crossing-free components

  5. page number pn( G ) = min k : ∃ k -page book embedding minimize # pages each page crossing-free union page number pn u ( G ) = min k : ∃ k -union embedding minimize # pages each page union of crossing-free components local page number pn ℓ ( G ) = min k : ∃ k -local book embedding minimize # pages each page crossing-free at any one vertex pn ℓ pn u pn K 3 , 3 2 2 3 K 5 2 3 3

  6. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) .

  7. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . � | E | = # { edges in P } P ∈P

  8. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . � | E | = # { edges in P } P ∈P � as each page is outerplanar < 2 · # { vertices on P } P ∈P

  9. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . � | E | = # { edges in P } P ∈P � as each page is outerplanar < 2 · # { vertices on P } P ∈P ≤ 2 · pn ℓ ( G ) | V | as each vertex is on at most pn ℓ ( G ) pages

  10. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . � | E | = # { edges in P } P ∈P � as each page is outerplanar < 2 · # { vertices on P } P ∈P ≤ 2 · pn ℓ ( G ) | V | Hence pn ℓ ( G ) ≥ | E | 2 | V | = 1 as each vertex is on at as each vertex is on at 4 · avd( G ) most pn ℓ ( G ) pages most pn ℓ ( G ) pages � v deg( v ) = 2 | E | avd( G ) = | V | | V |

  11. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . � | E | = # { edges in P } P ∈P � as each page is outerplanar < 2 · # { vertices on P } P ∈P ≤ 2 · pn ℓ ( G ) | V | Hence pn ℓ ( G ) ≥ | E | 2 | V | = 1 as each vertex is on at as each vertex is on at 4 · avd( G ) most pn ℓ ( G ) pages most pn ℓ ( G ) pages pn ℓ ( G ) ≥ 1 4 mad( G ) = ⇒ � v deg( v ) = 2 | E | avd( G ) = | V | | V |

  12. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound mad( G ) = k

  13. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound mad( G ) = k orientation with = ⇒ outdeg( v ) ≤ k/ 2 + 1

  14. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound mad( G ) = k orientation with = ⇒ outdeg( v ) ≤ k/ 2 + 1 = ⇒ ( k/ 2 + 2) -local star partition

  15. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound mad( G ) = k orientation with = ⇒ outdeg( v ) ≤ k/ 2 + 1 = ⇒ ( k/ 2 + 2) -local star partition ⇒ pn ℓ ( G ) ≤ 1 2 mad( G ) + 2 = as stars are crossing-free

  16. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound pn ℓ ( G ) ≤ 1 2 mad( G ) + 2

  17. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . pn ℓ ( G ) ≥ 1 4 mad( G ) . . . gives also an upper bound pn ℓ ( G ) ≤ 1 2 mad( G ) + 2 . . . also for union page number mad( G ) = k = ⇒ k + 2 star forests partition = ⇒ pn u ( G ) ≤ mad( G ) + 2

  18. Comparison of variants ⊲ For any graph G we have pn ℓ ( G ) ≤ pn u ( G ) ≤ pn( G ) . A simple lower bound . . . Corollary. pn ℓ ( G ) ≥ 1 4 mad( G ) pn u ( G ) ≤ 4 pn ℓ ( G ) + 2 but there are n -vertex k -regular graphs with . . . gives also an upper bound pn ℓ ( G ) ≤ 1 pn u ( G ) ≤ k + 2 2 mad( G ) + 2 and � √ � 2 − 1 1 pn( G ) = Ω kn k . . . also for union page number mad( G ) = k “local and union page numbers are tied to density, = ⇒ k + 2 star forests partition classical page number is tied to structure” = ⇒ pn u ( G ) ≤ mad( G ) + 2

  19. Planar graphs pn ℓ pn u pn 4 max. within planar graphs 3 2 pn( G ) = 3 1 4 mad( G ) ≤ pn ℓ ( G ) ≤ pn u ( G ) non-hamiltonian triangulation

  20. Planar graphs pn ℓ pn u pn 4 max. within planar graphs 3 2 pn( G ) = 3 pn ℓ ( G ) = pn u ( G ) = 2

  21. Planar graphs pn ℓ pn u pn 4 max. within planar graphs 3 ✗ ✗ 2 pn( G ) = 3 pn ℓ ( G ) = pn u ( G ) = 2 Theorem. there is a planar graph G with pn u ( G ) ≥ pn ℓ ( G ) ≥ 3

  22. Planar graphs pn ℓ pn u pn 4 max. within planar graphs 3 ✗ ✗ 2 G planar pn( G ) = 3 orientation with = ⇒ outdeg( v ) ≤ 3 pn ℓ ( G ) = pn u ( G ) = 2 = ⇒ 4 -local star partition = ⇒ pn ℓ ( G ) ≤ 4 G planar = ⇒ 5 star forest partition = ⇒ pn u ( G ) ≤ 5

  23. k -Trees (graphs of treewidth k ) 1 -tree: or K 1 attach to K 1 k -tree: or K k attach to K k

  24. k -Trees (graphs of treewidth k ) 1 -tree: pn ℓ pn u pn or k + 1 max. within K 1 attach to K 1 k -trees k k -tree: k − 1 . . . or k/ 2 K k attach to K k 1 4 mad( G ) ≤ pn ℓ ( G ) ≤ pn u ( G ) | E | ≈ k | V | = ⇒ mad( G ) ≈ 2 k

  25. k -Trees (graphs of treewidth k ) 1 -tree: pn ℓ pn u pn or k + 1 max. within K 1 attach to K 1 k -trees k k -tree: ✗ ✗ k − 1 . . . . . . . . . or ✗ ✗ k/ 2 K k attach to K k Theorem. ℓ -local book embedding ℓ -local book embedding for every = ⇒ for every k -tree k -tree with a forest on each page

  26. k -Trees (graphs of treewidth k ) 1 -tree: pn ℓ pn u pn or k + 1 max. within K 1 attach to K 1 k -trees k k -tree: ✗ ✗ k − 1 . . . . . . . . . or ✗ ✗ k/ 2 K k attach to K k G k -tree G k -tree orientation with = ⇒ k + 1 star forest partition = ⇒ outdeg( v ) ≤ k = ⇒ pn u ( G ) ≤ k + 1 = ⇒ ( k + 1) -local star partition = ⇒ pn ℓ ( G ) ≤ k + 1

  27. k -Trees (graphs of treewidth k ) 1 -tree: pn ℓ pn u pn or k + 1 max. within K 1 attach to K 1 k -trees k k -tree: ✗ ✗ k − 1 . . . . . . . . . or ✗ ✗ k/ 2 K k attach to K k A possible approach? ⊲ consider the unique ( k + 1) -coloring of G ⊲ then any two color classes induce a tree Still open: � k trees at each vertex Find the spine ordering! � can be combined to k or k + 1 forests

  28. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉

  29. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉

  30. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉

  31. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉ pn ℓ ( K 9 ) = 3

  32. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉ pn ℓ ( K 9 ) = 3 pn ℓ ( K 11 ) = 4

  33. Complete graphs pn ℓ pn u pn ⌈ n 2 ⌉ K n . . . n 3 . . . pn ℓ ( K 6 ) = 2 ⌈ n − 1 4 ⌉ pn ℓ ( K 15 ) ≤ 5 pn ℓ ( K 9 ) = 3 pn ℓ ( K 11 ) = 4

  34. Open problems pn ℓ pn u pn pn ℓ pn u pn ⌈ n 2 ⌉ k + 1 . . . k ⌈ n − 1 4 ⌉ k -trees, treewidth k complete graphs, K n pn ℓ pn u pn 4 3 planar graphs ⊲ computational complexity ? ⊲ K m,n ? ⊲ maximum pn u ( G ) / pn ℓ ( G ) ? ⊲ local and union queue numbers ?

  35. Open problems pn ℓ pn u pn pn ℓ pn u pn ⌈ n 2 ⌉ k + 1 . . . k ⌈ n − 1 4 ⌉ k -trees, treewidth k complete graphs, K n pn ℓ pn u pn 4 Thank you 3 planar graphs ⊲ computational complexity ? ⊲ K m,n ? ⊲ maximum pn u ( G ) / pn ℓ ( G ) ? ⊲ local and union queue numbers ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend