nearly sample optimal sparse fourier transform
play

(Nearly) Sample Optimal Sparse Fourier Transform Piotr Indyk 1 - PowerPoint PPT Presentation

(Nearly) Sample Optimal Sparse Fourier Transform Piotr Indyk 1 Michael Kapralov 1 Eric Price 2 1 MIT 2 MIT IBM Almaden UT Austin SODA14 Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA14 1 / 28


  1. (Nearly) Sample Optimal Sparse Fourier Transform Piotr Indyk 1 Michael Kapralov 1 Eric Price 2 1 MIT 2 MIT → IBM Almaden → UT Austin SODA’14 Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 1 / 28

  2. Fourier Transform and Sparsity Discrete Fourier Transform Given x ∈ C n , compute � x j ω ij , x i = � j ∈ [ n ] where ω is the n -th root of unity. Fundamental tool: Compression (image, audio, video) Signal processing Data analysis Medical imaging (MRI, NMR) Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 2 / 28

  3. Fourier Transform and Sparsity Sparse Fourier Transform The fast algorithm for DFT is FFT, runs in O ( n log n ) time improving on FFT in full generality a major open problem Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 3 / 28

  4. Fourier Transform and Sparsity Sparse Fourier Transform The fast algorithm for DFT is FFT, runs in O ( n log n ) time improving on FFT in full generality a major open problem Most interesting signals are sparse (have few nonzero entries) or approximately sparse in the Fourier domain. k -sparse=at most k non-zeros Hassanieh-Indyk-Katabi-Price’12 compute approximate sparse FFT in O ( k log n log ( n / k )) time Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 3 / 28

  5. Fourier Transform and Sparsity Sample complexity Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime Magnetic Resonance Imaging Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 4 / 28

  6. Fourier Transform and Sparsity Sample complexity Sample complexity=number of samples accessed in time domain. In some applications at least as important as runtime Magnetic Resonance Imaging Given access to x ∈ C n , find � y such that y || 2 ≤ C · min k − sparse � z || 2 || � x − � z || � x − � Optimal sample complexity? ...and small runtime? Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 4 / 28

  7. Fourier Transform and Sparsity Uniform bounds (for all): Non-uniform bounds (for each): Candes-Tao’06 Goldreich-Levin’89 Rudelson-Vershynin’08 Mansour’92 Cheraghchi-Guruswami-Velingker’12 Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02 Gilbert-Muthukrishnan-Strauss’05 Hassanieh-Indyk-Katabi-Price’12a Hassanieh-Indyk-Katabi-Price’12b Deterministic, Ω ( n ) runtime Randomized, O ( k · poly ( log n )) runtime O ( k log 3 k log n ) O ( k log n log ( n / k )) Lower bound: Ω ( k log n / loglog n ) even for adaptive algorithms Hassanieh-Indyk-Katabi-Price’12 Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 5 / 28

  8. Fourier Transform and Sparsity Uniform bounds (for all): Non-uniform bounds (for each): Candes-Tao’06 Goldreich-Levin’89 Rudelson-Vershynin’08 Mansour’92 Cheraghchi-Guruswami-Velingker’12 Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02 Gilbert-Muthukrishnan-Strauss’05 Hassanieh-Indyk-Katabi-Price’12a Hassanieh-Indyk-Katabi-Price’12b Deterministic, Ω ( n ) runtime Randomized, O ( k · poly ( log n )) runtime O ( k log 3 k log n ) O ( k log n log ( n / k )) Lower bound: Ω ( k log n / loglog n ) even for adaptive algorithms Hassanieh-Indyk-Katabi-Price’12 Theorem There exists an algorithm for ℓ 2 / ℓ 2 sparse recovery from Fourier measurements using O ∗ ( k log n ) samples and O ∗ ( k log 2 n ) runtime. O ∗ () hides ( loglog n ) O ( 1 ) factors. Optimal up to O (( loglog n ) C ) factor Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 5 / 28

  9. Sparse FFT in sublinear time ℓ 2 / ℓ 2 sparse recovery guarantees: y || 2 ≤ C · min k − sparse � z || 2 || � x − � z || � x − � Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 6 / 28

  10. Sparse FFT in sublinear time ℓ 2 / ℓ 2 sparse recovery guarantees: y || 2 ≤ C · Err 2 || � x − � k ( � x ) | � x 1 | ≥ ... ≥ | � x k | ≥ | � x k + 1 | ≥ | � x k + 2 | ≥ ... Residual error bounded by noise energy Err 2 x ) = � n k ( � x ) Err 2 x j | 2 k ( � j = k + 1 | � Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 7 / 28

  11. Sparse FFT in sublinear time ℓ 2 / ℓ 2 sparse recovery guarantees: y || 2 / Err 2 Signal to noise ratio R = || � x − � k ( � x ) ≤ C | � x 1 | ≥ ... ≥ | � x k | ≥ | � x k + 1 | ≥ | � x k + 2 | ≥ ... Residual error bounded by noise energy Err 2 x ) = � n k ( � x ) Err 2 x j | 2 k ( � j = k + 1 | � Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 8 / 28

  12. Sparse FFT in sublinear time ℓ 2 / ℓ 2 sparse recovery guarantees: y || 2 / Err 2 Signal to noise ratio R = || � x − � k ( � x ) ≤ C | � x 1 | ≥ ... ≥ | � x k | ≥ | � x k + 1 | ≥ | � x k + 2 | ≥ ... Residual error bounded by noise energy Err 2 x ) = � n k ( � x ) Err 2 x j | 2 k ( � j = k + 1 | � Sufficient to ensure that most elements are below average noise level: y i | 2 ≤ c · Err 2 x )/ k = : µ 2 | � x i − � k ( � Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 8 / 28

  13. Sparse FFT in sublinear time Iterative recovery Many algorithms use the iterative recovery scheme: Input: x ∈ C n y 0 ← 0 � For t = 1 to L z ← R EFINEMENT ( x , � � y t − 1 ) ⊲ Takes random samples of x − y Update � y t ← � y t − 1 + � z R EFINEMENT ( x , � y ) return dominant Fourier coefficients � z of x − y (approximately) y i | 2 ≥ µ 2 (above average noise level) dominant coefficients ≈ | � x i − � Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 9 / 28

  14. Sparse FFT in sublinear time R EFINEMENT ( x , � y ) return dominant Fourier coefficients � z of x − y (approximately) y i | 2 ≥ µ 2 (above average noise level) dominant coefficients ≈ | � x i − � Main questions: How many samples per SNR reduction step? How many iterations? Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 10 / 28

  15. Sparse FFT in sublinear time R EFINEMENT ( x , � y ) return dominant Fourier coefficients � z of x − y (approximately) y i | 2 ≥ µ 2 (above average noise level) dominant coefficients ≈ | � x i − � Main questions: How many samples per SNR reduction step? How many iterations? Summary of techniques from Gilbert-Guha-Indyk-Muthukrishnan-Strauss’02, Akavia-Goldwasser-Safra’03, Gilbert-Muthukrishnan-Strauss’05, Iwen’10, Akavia’10, Hassanieh-Indyk-Katabi-Price’12a, Hassanieh-Indyk-Katabi-Price’12b Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 10 / 28

  16. Sparse FFT in sublinear time 1-sparse recovery from Fourier measurements 1.4 1.5 1.2 1 1 0.5 0.8 magnitude magnitude 0 0.6 −0.5 0.4 0.2 −1 0 −1.5 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 frequency time x a = ω a · f + noise 2 π f / n O ( log SNR n ) measurements for random a Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 11 / 28

  17. Sparse FFT in sublinear time Reducing k -sparse recovery to 1-sparse recovery Permute with a random linear transformation and phase shift 2.5 2 1 1.5 0.8 1 0.5 0.6 magnitude magnitude 0 0.4 −0.5 −1 0.2 −1.5 0 −2 −2.5 −0.2 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 time frequency Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 12 / 28

  18. Sparse FFT in sublinear time Reducing k -sparse recovery to 1-sparse recovery Permute with a random linear transformation and phase shift 2.5 2 1 1.5 0.8 1 0.5 0.6 magnitude magnitude 0 0.4 −0.5 −1 0.2 −1.5 0 −2 −2.5 −0.2 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 time frequency Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 13 / 28

  19. Sparse FFT in sublinear time Reducing k -sparse recovery to 1-sparse recovery Permute with a random linear transformation and phase shift 2.5 2 1 1.5 0.8 1 0.5 0.6 magnitude magnitude 0 0.4 −0.5 −1 0.2 −1.5 0 −2 −2.5 −0.2 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 −1000 −800 −600 −400 −200 0 200 400 600 800 1000 time frequency Indyk, Kapralov, Price (MIT, IBM Almaden) (Nearly) Optimal Fourier Sampling SODA’14 14 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend