leptogenesis and fundamental symmetries of nature
play

Leptogenesis and Fundamental Symmetries of Nature Mu-Chun Chen, - PowerPoint PPT Presentation

Leptogenesis and Fundamental Symmetries of Nature Mu-Chun Chen, University of California at Irvine Project X Physics Study Workshop, Fermilab, June 16, 2012 1 Baryon Number Asymmetry in SM Within the SM: CP violation in quark sector


  1. Leptogenesis and Fundamental Symmetries of Nature Mu-Chun Chen, University of California at Irvine Project X Physics Study Workshop, Fermilab, June 16, 2012 1

  2. Baryon Number Asymmetry in SM • Within the SM: ‣ CP violation in quark sector not sufficient to explain the observed matter- antimatter asymmetry of the Universe • CP phase in quark sector: Shaposhnikov, 1986; Farrar, Shaposhnikov, 1993 B � α 4 w T 3 δ CP � A CP δ CP � 10 − 8 δ CP � 10 − 20 s T 12 C pression factor due to CP vio ‣ effects of CP violation suppressed by small quark mixing − − − A CP = ( m 2 t − m 2 c )( m 2 c − m 2 u )( m 2 u − m 2 · ( m 2 b − m 2 s )( m 2 s − m 2 d )( m 2 d − m 2 t ) b ) · J f B ∼ 10 − 28 , too small to account for the observed • Various Baryogenesis mechanisms (see Babu’s talk) • neutrino masses open up a new possibility Fukugita, Yanagida, 1986 [For a review, see e.g. M.-C. C. TASI 2006 Lectures on Leptogenesis, hep-ph/0703087] Leptogenesis Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 2

  3. Leptogenesis Fukugita, Yanagida, 1986 • Implemented in the context of seesaw mechanism • out-of-equilibrium decays of RH neutrinos produce primordial lepton number asymmetry Luty, 1992; Covi, Roulet, Vissani, 1996; Flanz et al, 1996; Plumacher, 1997; Pilaftsis, 1997 H ∗ H ∗ H ∗ l l l l N k N k N j N k N j H H l i l i l i � � � Γ ( N 1 → � α H ) − Γ ( N 1 → � α H ) � 1 = α � � � Γ ( N 1 → � α H ) + Γ ( N 1 → � α H ) α � � � � � • sphaleron process convert ∆ L → ∆ B • the asymmetry Buchmuller, Plumacher, 1998; Buchmuller, Di Bari, Plumacher, 2004 Y B = n B � n B ⇧ : e ffi ciency factor ⇤ (10 � 1 � 10 � 3 ) Y B ⇧ 10 � 2 ⇥⇧ ⇤ 8 . 6 ⇥ 10 � 11 s (k: inverse decay ∆ L=1, scattering processes ∆ L=1, 2) Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 3

  4. Primordial ∆ L from Heavy Neutrino Decay [Animation Credit: Michael Ratz] Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 4

  5. Sphaleron Converting ∆ L → ∆ B [Animation Credit: Michael Ratz] Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 5

  6. Bound on Light Neutrino Mass M 1 ≥ 2 × 10 9 GeV • sufficient leptogenesis requires � • bound on light neutrino mass Buchmuller, Di Bari, Plumacher, 2005 Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 6

  7. Gravitino Problem • Thermally produced RH neutrino N: • high reheating temperature needed: ⇒ T RH > M R > 2 x 10 9 GeV • over-production of light state: gravitinos • For gravitinos LSP: • DM constraint from WMAP • stringent bound on gluino mass for any given gravitino mass & T RH • For unstable gravitinos: • long life time • decay during and after BBN ⇒ affect abundance of light elements Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 7

  8. Gravitino Problem For light gravitino mass, BBN constraints ⇒ T RH < 10 (5-6) GeV Kawasaki, Kohri, Moroi, Yotsuyanagi, 2008 Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 8

  9. Gravitino Problem For light gravitino mass, BBN constraints ⇒ T RH < 10 (5-6) GeV tension! Sufficient leptogenesis Kawasaki, Kohri, Moroi, Yotsuyanagi, 2008 ⇒ T RH > M R > 2 x 10 9 GeV Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 9

  10. Alternatives: “Non-standard” Scenarios • Possible ways to avoid the tension: • resonant enhancement in self-energy diagram ⇒ lowering M R , thus T RH ➔ resonant leptogenesis (near degenerate RH neutrinos) Pilaftsis, 1997 Recall: in standard leptogenesis: H ∗ H ∗ H ∗ l l l l N k N k N j N k N j H H l i l i l i self-energy diagram dominate for near degenerate RH neutrino masses, M 1,2 enhanced O(1) asymmetry possible if O Im ( h ν h † ν ) 2 leptogenesis possible M 1 − M 2 ∼ 1 12 assuming ∼ 1 2 Γ N 1 , 2 , ( h ν h † ν ) 11 ( h ν h † even for low M 1,2 ν ) 22 Pilaftsis, Underwood, 2003 Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 10

  11. Alternatives: “Non-standard” Scenarios • Possible ways to avoid the tension: • relaxing relations between lepton number asymmetry and RH nu mass ➔ soft leptogenesis (SUSY CP phases) Boubekeur, 2002; Grossman, Kashti, Nir, Roulet, 2003; D’Ambrosio, Giudice, Raidal, 2003; CP asymmetry in decay → standard leptogenesis CP asymmetry in mixing → soft leptogenesis soft SUSY breaking ⇒ mismatch between mass eigenstates and CP eigenstates � � of heavy sneutrinos ⇒ asymmetry � � Im( A ) A, B: SUSY CP-violating phases 4 Γ 1 B � = δ B − F lose connection to neutrino oscillation Γ 2 1 + 4 B 2 M 1 • relaxing relation between T RH and RH neutrino mass ➔ non-thermal leptogenesis (non-thermal production of RH neutrinos) s m Φ > s, Φ → N 1 + N 1 Inflaton decay: n 2 M 1 . Fuji, Hamaguchi, Yanagida, 2002 Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 11

  12. Dirac Leptogenesis K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; H. Murayama, A. Pierce, 2002 • Leptogenesis possible even when neutrinos are Dirac particles • small Dirac mass through suppressed Yukawa coupling • Characteristics of Sphaleron effects: • only left-handed fields couple to sphalerons • sphalerons change (B+L) but not (B-L) Diagram from Dick, Lindner, • sphaleron effects in equilibrium for Ratz, Wright, 2000 T > Tew • If L stored in RH fermions can survive below EW phase transition, net lepton number can be generated even with L=0 initially Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 12

  13. Dirac Leptogenesis [Animation Credit: Michael Ratz] Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 13

  14. Dirac Leptogenesis [Animation Credit: Michael Ratz] Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 14

  15. Dirac Leptogenesis Hence the • for neutrinos: LH equilibration can occur at late time ( ) because of their T eq � T EW much suppressed masses ( ) es m D < 10 keV • Naturally small Dirac neutrino mass? • Two examples: • non-anomalous U(1) family symmetry M.-C.C., J. Huang, W. Shepherd (2011) • gives realistic quark and lepton masses and mixing patterns • naturally small Dirac neutrino masses due to higher dimensional operators • primordial asymmetry by U(1) flavor higgs decay • discrete R-symmetries M.-C.C., M. Ratz, C. Staudt, P . Vaudrevange, to appear • satisfy all anomaly cancellation conditions a la Green-Schwarz mechanism • automatically suppressed the mu term, thus solving the mu problem in MSSM • automatically suppressed the Dirac neutrino masses Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 15

  16. Testing Leptogenesis? • Sakharov Conditions: • out-of-equilibrium Leptogenesis with Majorana neutrino: ➡ expanding Universe heavy field decay ➡ smallness of neutrino masses Dirac Leptogenesis: late equilibration temperature • Baryon Number Violation ➡ abound in many extensions of the SM ➡ neutrinoless double beta decay ‣ Leptogenesis with Majorana (if observed) or Dirac (if not observed) neutrinos • CP violation ➡ Long baseline neutrino oscillation experiments Mu-Chun Chen, UC Irvine Leptogenesis Fermilab Project X Study, 06/18/2012 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend