hadron mass effects on kaon production on deuteron
play

Hadron Mass Effects on Kaon production on deuteron Juan Guerrero - PowerPoint PPT Presentation

Hadron Mass Effects on Kaon production on deuteron Juan Guerrero Hampton University & Jefferson Lab Hadronic Physics with Lepton and Hadron Beams September 6, 2017 Based on: J. G., J. Ethier, A. Accardi, S. Casper ,W.


  1. 
 Hadron Mass Effects on Kaon production on deuteron Juan Guerrero Hampton University & Jefferson Lab Hadronic Physics with Lepton and Hadron Beams September 6, 2017 Based on: 
 J. G., J. Ethier, A. Accardi, S. Casper ,W. Melnitchouk, JHEP 1509 (2015) 169 J.G & Alberto Accardi, work in progress…

  2. What can we see inside a proton? Partons: 3 “valence quarks” p = (u u d) c ¯ c Gluons d u s sea quarks: strange , charm, bottom. u ¯ s Parton (momentum) Distributions Function (PDFs): Well determined for the “valence quarks”and gluons. Interested in the s-quark. Not the case for the sea quarks. 2 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  3. Strange quark PDF one way “Tagging” Kaon in Hard How can we access the s-quark PDF? Scattering reactions h = K For example: Semi inclusive Deep inelastic scattering (SIDIS): e − + p → e − + h + X Kaon contains an s-quark in their l 0 valence structure. Kaon FF: D K q l Detect a Kaon: good proxy for a ¯ s K + strange quark u m K ' 0 . 5 GeV s-PDF BUT: ¯ u Not necessarily negligible at X ¯ p s HERMES and COMPASS s experiments 3 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  4. How to tag s-quarks? Use “integrated Kaon Multiplicities” e xp dQ 2 R 0 . 8 dN K R 0 . 2 dz h Experimentally dx B dQ 2 dz h M K exp = dN e R HERMES, COMPASS: e xp dQ 2 dx B dQ 2 Theoretically LO, neglect masses: R 0 . 8 0 . 2 dz h D h q e 2 P q q ( x B ) q ( z h ) Z M K = dz h D K = s ( x B ) s ( z h ) P q e 2 q q ( x B ) +light quarks Comparing these two expressions Extract the s-quark PDF. 4 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  5. Integrated Kaon Multiplicities: SIDIS on Deuteron HERMES: Claim very different s-quark shape compared to CTEQ6L. ℳ K + + ℳ K − 0.2 Measurements from ATLAS/CMS at COMPASS LHC also show different s-PDF. HERMES Strange PDF may not be what we think! 0.15 But COMPASS: Different x B dependence 0.1 COMPASS overall value higher. 2 1 10 10 − − 1 x Where does this discrepancy come from? Is it real or apparent? 5 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  6. Hadron Mass Effects Usually in pQCD, the masses of the Proton and the Kaon (detected hadron) are neglected. ¯ u K m K ' 0 . 5 GeV s u m p ' 1 GeV p d u Q 2C & Q 2H ' 1 � 10 GeV 2 Maybe masses are not so negligible! 6 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  7. Hadron Mass Effects Let’s consider an example for Pion Mass effects at JLab. Jefferson Lab experiments: Pions at JLab (Exp. # E00-108) Usually low Q 2 . Q 2 ∼ 2 . 5 GeV 2 1/Q 2 corrections have to Accardi et al. be controlled. O(m 2 /Q 2 ) = Hadron Mass Corrections (HMCs) Accardi et al JHEP 0911, 084 (2009) m = M P , m π m π ∼ 0 . 14 GeV 7 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  8. Hadron Mass Effects Back to Kaons: ℳ K + + ℳ K − 0.2 COMPASS HERMES 0.15 0.1 2 1 10 10 1 − − x HERMES & COMPASS: relatively low Q 2 , m 2 K ∼ 12 m 2 π Could the discrepancy be due to m K2 /Q 2 effects? 8 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  9. SIDIS Kinematics Variables DIS invariants M 2 = p 2 Q 2 = − q 2 lepton l 0 l y = p · q detected hadron Q 2 q x B = p · l p h 2 p · q s SIDIS invariants p X Undetected particles m 2 h = p 2 Proton or neutron h z h = p h · p q · p 9 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  10. SIDIS: Massive scaling variables Scaling Variables P 0 Nachtmann: a µ ξ ≡ − q + 2 x B p + = p 1 + 4 x 2 B M 2 /Q 2 1 + a + Q 2 → ∞ a − Bjorken limit: ξ → x B P 3 Fragmentation: a + = a 0 + a 3 √ s 2 ! 1 − 4 x 2 B M 2 m 2 ζ h ≡ p − q − = z h ξ h h 1 + z 2 h Q 4 a − = a 0 − a 3 x B 2 √ 2 Q 2 → ∞ Bjorken limit: ζ h → z h 10 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  11. Collinear momenta (p,q) frame: p and q are collinear and have zero transverse momentum Fragmenting parton collinear to hadron e ! k 0 2 + ( p h ⊥ /z ) 2 , p � k 0 = z , p h ⊥ e h 2 p � z h /z p h Fragmentation into a Approx.: q massive hadron On-shell parton k 0 ≈ e collinear to proton: k 0 2 =? k 0 e H k 2 = 0 Y e k ≈ e e k = ( xp + , 0 , 0 T ) k need to match X partonic & hadronic p kinematics 11 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  12. Matching Hadronic and Partonic Kinematics at LO Hard scattering: 4-momentum conservation at LO respects gauge H LO ( k, k 0 ) ≈ H LO ( e k, e k 0 ) ∝ δ (4) ( q + e k − e G k 0 ) invariance q Bjorken limit: ✓ ◆ e k 0 2 e x = x B k 0 x = ξ 1 + Q 2 H z = z h z = ζ h e k Fragmenting blob: momentum conservation in + direction h + Y + ≥ p + e k 0 + = p + h p h Standard choice: k 0 2 ≥ m 2 = m 2 e k 0 2 = 0 e k 0 e h h z ζ h Y LO Albino et al. Nucl. Phys. B803 (2008) 42-104 12 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  13. Leading Order (LO) Multiplicities at finite Q 2 . With Hadron Masses: Scale dependent Jacobian Finite Q 2 scaling variables e xp. dQ 2 R 0 . 8(0 . 85) J h ( ξ , ζ h , Q 2 ) P q e 2 q q ( ξ h , Q 2 ) D h q ( ζ h , Q 2 ) dz h R 0 . 2 M h ( x B ) = R e xp. dQ 2 P q e 2 q q ( ξ , Q 2 ) 1 + m 2 ⇣ ⌘ h ξ h ≡ ξ ζ h Q 2 Note: Theory integrated over z, Q 2 experimental bins for each x B . ✓ M 2 Q 2 , m 2 ◆ Bjorken limit: h → 0 Q 2 R 0 . 8(0 . 85) e xp. dQ 2 P q e 2 q q ( x B , Q 2 ) D h q ( z h , Q 2 ) dz h R 0 . 2 M h (0) ( x B ) = e xp. dQ 2 P q e 2 q q ( x B , Q 2 ) R Parton model definition 13 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  14. Data over Theory: K + + K - D/T ratio allows to compare experiments at different Q 2 Normalization of Kaon FFs poorly known Massless HMCs COMPASS vs. HERMES: After HMCs: Size discrepancy reduced Slope more flat COMPASS well described (except normalization) Residual tension with HERMES slope 14 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  15. HERMES & COMPASS data: direct comparison Produce approximate “massless” parton model multiplicities “Theoretical correction ratios” Make data directly comparable Largely insensitive to D K normalization HMC ratio HMC = M h (0) R h COMPASS: M h M h (0) exp ≡ M h exp × R h Evolution ratio (HERMES HMC to COMPASS) HERMES: � M h (0) ( x B ) � M h (0) exp ≡ M h exp × R h HMC × R H → C � R H → C COMPASS P.S. = evo evo � M h (0) ( x B ) � � HERMES P.S. 15 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  16. Correction ratios Theoretical correction ratios R HERMES HMC R COMPASS HMC R H → C evo Hadron mass effects dominant over evolution effects At COMPASS smaller HMCs than at HERMES. 16 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  17. Direct Data Comparison K = K + + K − “Massless data” at same Experimental Data Q 2 Removing HMCs reduce the discrepancy in size. Corrections rather stable with respect to FF choice. 17 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  18. Kaon ratios Ratio reduces experimental systematics. ℳ K + / ℳ K − COMPASS 2.5 HERMES 2 1.5 K + /K − 1 2 1 10 10 1 − − x Size discrepancy persists Slopes are now compatible Except last two HERMES points?. 18 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  19. 
 Data over Theory: K + /K - D/T ratio allows to compare experiments at different Q 2 Massless HMCs K + /K − K + /K − After HMCs: HERMES overall agreement with COMPASS except last bins? Strange quark in current PDF fits too soft? 19 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  20. Direct Data Comparison “Massless data” at same Experimental Data Q 2 K + /K − K + /K − HERMES & COMPASS fully compatible. large x bins at HERMES still suspicious. 20 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  21. Coming back to the s-PDF Can we extract s-quark from SIDIS Kaon multiplicities? Yes, but: Make sure you control the FFs or fit at the same time with PDFs ( e.g. Ethier, Sato, Melnitchouk. arXiv:1705.05889 ) Include mass corrections Non negligible even at small-x (because Q 2 is small) e k 0 2 = m 2 Our proposed scheme with with seems able to reconcile h / ζ h HERMES & COMPASS Kaon multiplicities. 21 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  22. Conclusion and outlook. HMCs at LO are captured by new scaling variables ξ h and ζ h K + + K - multiplicities: HERMES vs. COMPASS size discrepancy reduced Difference in slopes still needs to be solved. K + / K - ratio: No slope problem systematics in HERMES K + + K - ? Future developments: Evaluating HMCs for polarized asymmetries. k 0 2 6 = 0 . Prove factorization at NLO with Use the multiplicity data in new fits of FFs with HMC corrected theory 22 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  23. Thank you! 23 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  24. Backup slides 24 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  25. K + + K - Multiplicities Data (dots) vs. Theory (lines) K = K + + K − Kaon FFs poorly known in absolute value Large FFs systematics HMCs are large 25 juanvg@jlab.org Jefferson Lab, Sep 6 2017

  26. Kaon ratios Data (dots) vs. HMC Theory (lines) COMPASS: theory dependence similar to experimental values HERMES: less steep than theory and at large-x Some PDF systematics, due very likely to s PDF (slopes) need to refit the s quark PDF 26 juanvg@jlab.org Jefferson Lab, Sep 6 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend