lectures on paracontrolled distributions with
play

Lectures on paracontrolled distributions with applications to - PowerPoint PPT Presentation

Lectures on paracontrolled distributions with applications to singular SPDEs Massimiliano Gubinelli CEREMADE Universit Paris Dauphine Universit Milano Bicocca February 2nd6th 2015 ( 1 / 63 ) Homogenisation of a random potential


  1. Lectures on paracontrolled distributions with applications to singular SPDEs Massimiliano Gubinelli CEREMADE Université Paris Dauphine Università Milano Bicocca – February 2nd–6th 2015 ( 1 / 63 )

  2. Homogenisation of a random potential ⊲ Consider the linear heat equation with a small random time-independent periodic and smooth (Gaussian) potential V ∂ t U ( t , x ) = ∆ U ( t , x ) + ε 2 − α V ( x ) U ( t , x ) , t ≥ 0, x ∈ T d ε where ε > 0 is a small parameter, α < 2 and T ε = T / ε , T = R / ( 2 π Z ) ∼ [ 0, 2 π ) . ⊲ Introduce macroscopic variables u ε ( t , x ) = U ( t / ε 2 , x / ε ) with parabolic rescaling, then t ≥ 0, x ∈ T d ∂ t u ε ( t , x ) = ∆ u ε ( t , x ) + V ε ( x ) u ε ( t , x ) , with V ε ( x ) = ε − α V ( x / ε ) , x ∈ T d . Problem: Study the limit ε → 0 for u ε . ( 2 / 63 )

  3. The random potential The covariance of the macroscopic noise is E [ V ε ( x ) V ε ( y )] = ε − 2 α C ε (( x − y ) / ε ) , x , y ∈ T d where C ε : T d ε → R is a smooth, positive–definite function on T d ε . Assume � ε C ε ( x ) dx = 1. T d Take smooth test functions ϕ , ψ ∈ S ( T d ) and let V ε ( ϕ ) = � T d ϕ ( x ) V ε ( x ) dx then � E [ V ε ( ϕ ) V ε ( ψ )] = ε − 2 α T d × T d ϕ ( x ) ψ ( y ) C ε (( x − y ) / ε ) dxdy � ∼ ε d − 2 α T d ϕ ( x ) ψ ( x ) dx as ε → 0. Lemma If d > 2 α then V ε → 0 in law. If d = 2 α then V ε converges in law to the space white noise ξ on T d . White noise on T d A family { ξ ( ϕ ) } ϕ ∈ S ( T d ) of r.v. such that ξ ( ϕ ) ∼ N ( 0, � ϕ � 2 L 2 ( T d ) ) . ( 3 / 63 )

  4. Fourier representation On the covariance C ε we assume the form √ 2 π ) d ∑ � d k e i � x − y , k � R ( k ) → ε → 0 ( 2 π ) d /2 e i � x , k � R ( k ) C ε ( x − y ) = ( ε / R d k ∈ ε Z d where Z d 0 = Z d \{ 0 } and R ∈ S ( R d ) . There exists a family of centered complex Gaussian random variables { g ( k ) } k ∈ Z d such that g ( k ) ∗ = g ( − k ) and E [ g ( k ) g ( k ′ )] = I k + k ′ = 0 and ε d /2 − α � e i � x , k � 2 π ) d /2 ∑ V ε ( x ) = √ R ( ε k ) g ( k ) ( k ∈ Z d Taking α = d /2 we have (as distributions) � ξ ( x ) = ( 2 π ) − d /2 R ( 0 ) ∑ e i � x , k � g ( k ) . k ∈ Z d Exercise: Show that there exists a version of ξ taking values in S ′ . ( 4 / 63 )

  5. Sobolev regularity Consider Sobolev spaces H σ over T d with norm � f � 2 H σ ( T d ) = ∑ ( 1 + | k | ) − 2 ρ | F T d f ( k ) | 2 . k ∈ Z d ε d − 2 α ( 1 + | k | ) − 2 ρ R ( ε k ) ∼ ε 2 ρ − 2 α → 0 E � V ε � 2 2 π ) d ∑ H − ρ = √ ( k ∈ Z d if ρ > α and d > 2 α . It stays bounded if d = 2 α and ρ > α . Similarly for E � X ε � 2 H 2 − ρ . The white noise ξ belongs to H − ρ ( T d ) for all ρ < d /2. It is possible to show that it is not better: a.s. � ξ � H − ρ = + ∞ for ρ ≥ d /2. ( 5 / 63 )

  6. Guesswork As ε → 0 we guess that u ε → u where � if d > 2 α 0 L u = u ξ if d = 2 α with L = ∂ t − ∆ the heat operator. This would hold provided the solution map Ψ : η �→ v which sends potentials η to solutions of the parabolic Anderson model (PAM) L v = v η is continuous in an appropriate topology in which ( V ε ) ε converges. ( 6 / 63 )

  7. Littlewood–Paley decomposition ϕ : R d → C with polynomial growth defines a Fourier multiplier ϕ ( D ) : S ′ → S ′ , ϕ ( D ) f = F − 1 ( ϕ F f ) . ⊲ Dyadic partition of unity: χ , ρ ∈ C ∞ ( R d , R + ) such that 1. supp ρ ⊆ B = {| x | � c } and supp ρ ⊆ A = { a � | x | � b } 2. χ + ∑ j � 0 ρ ( 2 − j · ) ≡ 1 3. supp ( χ ) ∩ supp ( ρ ( 2 − j · )) ≡ 0 for j � 1 and supp ( ρ ( 2 − i · )) ∩ supp ( ρ ( 2 − j · )) ≡ 0 for all i , j � 0 with | i − j | � 1. Write ρ − 1 = χ and ρ j = ρ ( 2 − j · ) for j � 0. ⊲ Littlewood–Paley blocks: ∆ j f = ρ j ( D ) f = F − 1 ( ρ j F f ) = K i ∗ f = F − 1 � � ρ j F f , j � − 1. where K i = ( 2 π ) − d /2 F − 1 ρ i = 2 id K ( 2 i · ) with K ∈ L 1 ( R d ) Littlewood–Paley decomposition f = ∑ for all f ∈ S ′ . ∆ j f = lim j → ∞ S j f j � − 1 ( 7 / 63 )

  8. Hölder-Besov spaces For α ∈ R , the Hölder-Besov space C α is given by C α = B α ∞ , ∞ ( T d , R ) , where � � ( 2 j α � ∆ j f � L p ) q � 1/ q � f ∈ S ′ : � f � B α B α ∑ p , q = p , q = < ∞ . j � − 1 B α p , q is a Banach space and while the norm �·� B α p , q depends on ( χ , ρ ) , the space B α p , q does not and any other dyadic partition of unity corresponds to an equivalent norm. Notation: �·� α = �·� B α ∞ , ∞ . � ∆ i f � L ∞ � 2 − i α � f � α By Parseval B α 2,2 = H α . Example ∆ i δ 0 ( x ) = ( K i ∗ δ 0 )( x ) = K i ( x ) = 2 id K ( 2 i x ) ⇒ � ∆ i δ 0 � L ∞ ( T d ) ≃ 2 id so δ 0 ∈ C − d . ( 8 / 63 )

  9. Tools Bernstein inequalities Let B be a ball and k ∈ N 0 . For any λ � 1, 1 � p � q � ∞ , and f ∈ L p with supp ( F f ) ⊆ λ B we have � � 1 p − 1 µ ∈ N d : | µ | = k � ∂ µ f � L q � k , B λ k + d max q � f � L p . Besov embedding Let 1 � p 1 � p 2 � ∞ and 1 � q 1 � q 2 � ∞ , and let α ∈ R . Then B α p 1 , q 1 is continuously embedded into B α − d ( 1/ p 1 − 1/ p 2 ) . p 2 , q 2 ( 9 / 63 )

  10. An L 2 computation ε d /2 − α � e i � x , k � ρ i ( k ) 2 π ) d /2 ∑ ∆ i V ε ( x ) = √ R ( ε k ) g ( k ) ( k ∈ Z d so √ 2 π ) d ε − 2 α ∑ k ∈ Z d ρ i ( k ) 2 e i � x , k � R ( ε k ) E [ | ∆ i V ε ( x ) | 2 ] ε d ( = (1) ε d − 2 α 2 id sup k ∈ ε 2 i A R ( k ) , � where A is the annulus in which ρ is supported. Now if ε 2 i � 1 we have E [ | ∆ i V ε ( x ) | 2 ] � 2 id ε d − 2 α = ε β − 2 α 2 i β . The assumption d − 2 α � 0 then implies E [ | ∆ i V ε ( x ) | 2 ] � 2 ( 2 α + κ ) i ε κ for any 0 � κ � d − 2 α . In the case ε 2 i > 1 we use that � B ( 0,1 ) c R ( k ) d k < + ∞ to estimate � ε d ∑ R ( ε k ) � R d R ( k ) d k < + ∞ , k ∈ Z d and then E [ | ∆ i V ε ( x ) | 2 ] � ε − 2 α � 2 2 α i ( ε 2 i ) κ for any small κ > 0. Assume d − 2 α � 0. For any 0 � κ � d − 2 α E [ | ∆ i V ε ( x ) | 2 ] � 2 ( 2 α + κ ) i ε κ . ( 10 / 63 )

  11. From L 2 to almost sure behavior ⊲ Note that ∆ i V ε ( x ) is a Gaussian r.v. so for any p � � E [ � V ε � p p , p ] = ∑ 2 − ip ρ T d dx E [ | ∆ i V ε ( x ) | p ] = C p ∑ 2 − ip ρ T d dx ( E [ | ∆ i V ε ( x ) | 2 ]) p /2 B − ρ i i 2 − ip ρ 2 p ( α + κ /2 ) i ε p κ /2 � ε p κ /2 � ∑ i for all ρ > α + κ /2. ⊲ By Besov embedding � V ε � B − ρ ∞ , ∞ � � V ε � B − ρ + d / p so p , p E [ � V ε � p ∞ , ∞ ] � E [ � V ε � p p , p ] � ε p κ /2 B − ρ B − ρ for all ρ > α + κ /2 + d / p . Note that κ and p are arbitrary. Theorem If d > 2 α then V ε → 0 in C − α − . While if d = 2 α then V ε converges to the space white noise on T d in C − α − . ( 11 / 63 )

  12. Regularity of the solution map We are let to the study of the properties of the equation L v = η v with η ∈ C − α − . This stability is easy to establish when α < 1 by standard estimates in Besov spaces. We need two ingredients: ( γ = 2 − α − ) 1. Schauder estimates in Besov spaces for the parabolic equation L f = g in the form � f � γ � � g � γ − 2 2. Continuity of the product map ( η , v ) �→ v η in the form � v η � γ − 2 � � v � γ � η � γ − 2 v ∈ C γ − → v η ∈ C γ − 2 − → Γ ( v ) = L − 1 ( v η ) ∈ C γ ( 12 / 63 )

  13. Schauder estimates Let Jf such that L Jf = f and Jf ( 0 ) = 0 then � t 0 e ∆ ( t − s ) f s d s . Jf ( t ) = � f ( t ) − f ( s ) � Consider C X = C ([ 0, T ] ; X ) and norms � f � C σ T X = sup 0 � s < t � T . Let | t − s | σ T = C T C σ ∩ C σ /2 L ∞ with the norm � · � L σ L σ T = max {� · � C T C σ , � · � C σ /2 L ∞ } . T T If σ ∈ ( 0, 2 ) then � Jf � L σ T � ( 1 + T ) � f � C T C σ − 2 � t �→ P t u � L σ T � � u � σ . ( 13 / 63 )

  14. Product and paraproduct estimates Deconstruction of a product: f ∈ C ρ , g ∈ C γ fg = ∑ ∆ i f ∆ j g = f ≺ g + f ◦ g + f ≻ g i , j ≥− 1 f ≺ g = g ≻ f = ∑ f ◦ g = ∑ ∆ i f ∆ j g ∆ i f ∆ j g i < j − 1 | i − j |≤ 1 Paraproduct (Bony, Meyer et al.) f ≺ g ∈ C min ( γ + ρ , γ ) f ◦ g ∈ C γ + ρ only if γ + ρ > 0 ( 14 / 63 )

  15. Proof. Recall f ∈ C ρ , g ∈ C γ . i ≪ j ⇒ supp F ( ∆ i f ∆ j g ) ⊆ 2 j A i ∼ j ⇒ supp F ( ∆ i f ∆ j g ) ⊆ 2 j B So if ρ > 0 ∆ q ( f ≺ g ) = ∑ = O ( 2 − q γ ) ⇒ f ≺ g ∈ C γ , j : j ∼ q ∑ ∆ q ( ∆ i f ∆ j g ) i : i < j − 1 � �� � O ( 2 − i ρ − j γ ) while if ρ < 0 ∆ q ( f ≺ g ) = ∑ = O ( 2 − q ( γ + ρ ) ) ⇒ f ≺ g ∈ C γ + ρ . j : j ∼ q ∑ ∆ q ( ∆ i f ∆ j g ) i : i < j − 1 � �� � O ( 2 − i ρ − j γ ) Finally for the resonant term we have ∆ q ( f ◦ g ) = ∑ ∆ q ( ∆ i f ∆ j g ) = ∑ O ( 2 − j ( ρ + γ ) ) ⇒ f ◦ g ∈ C γ + ρ i ∼ j � q i � q but only if the sum converges. ( 15 / 63 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend