lecture 9
play

Lecture 9 ARIMA Models Colin Rundel 02/15/2017 1 2 MA ( ) 3 - PowerPoint PPT Presentation

Lecture 9 ARIMA Models Colin Rundel 02/15/2017 1 2 MA ( ) 3 From last time, 0 w Properties: MA ( q ) MA ( q ) : y t = + w t + 1 w t 1 + 2 w t 2 + + q w t q E ( y t ) = Var ( y t ) = ( 1 + 2 1 +


  1. Lecture 9 ARIMA Models Colin Rundel 02/15/2017 1

  2. 2 MA ( ∞ )

  3. 3 From last time, 0 w Properties: MA ( q ) MA ( q ) : y t = δ + w t + θ 1 w t − 1 + θ 2 w t − 2 + · · · + θ q w t − q E ( y t ) = δ Var ( y t ) = ( 1 + θ 2 1 + θ 2 + · · · + θ 2 q ) σ 2 { θ h + θ 1 θ 1 + h + θ 2 θ 2 + h + · · · + θ q − h θ q if | h | ≤ q Cov ( y t , y t + h ) = if | h | > q and is stationary for any values of θ i

  4. 4 Sometimes, a slightly strong condition called absolute summability, MA ( ∞ ) If we let q → ∞ then process will still be stationary if the moving average coefficients ( θ ’s) are square summable, ∞ ∑ i < ∞ θ 2 i = 1 since this is necessary for Var ( y t ) < ∞ . i = 1 | θ i | < ∞ , is necessary (e.g. for some CLT related asymptotic results) . ∑ ∞

  5. Invertibility process then it is said that the MA process is invertible. 5 If a MA ( q ) process, y t = δ + θ q ( L ) w t , can be rewritten as a purely AR MA ( 1 ) w/ δ = 0 example:

  6. p L y t w t can be q L are Invertibility vs Stationarity Conversely, an AR p process is stationary if rewritten as an exclusively MA process (of possibly infinite order), i.e. y t L w t . So using our results w.r.t. L it follows that if all of the roots of outside the complex unit circle then the moving average is invertible. 6 A MA ( q ) process is invertible if y t = δ + θ q ( L ) w t can be rewritten as an exclusively AR process (of possibly infinite order), i.e. ϕ ( L ) y t = α + w t .

  7. q L are Invertibility vs Stationarity rewritten as an exclusively MA process (of possibly infinite order), i.e. So using our results w.r.t. L it follows that if all of the roots of outside the complex unit circle then the moving average is invertible. 6 A MA ( q ) process is invertible if y t = δ + θ q ( L ) w t can be rewritten as an exclusively AR process (of possibly infinite order), i.e. ϕ ( L ) y t = α + w t . Conversely, an AR ( p ) process is stationary if ϕ p ( L ) y t = δ + w t can be y t = δ + θ ( L ) w t .

  8. Invertibility vs Stationarity rewritten as an exclusively MA process (of possibly infinite order), i.e. outside the complex unit circle then the moving average is invertible. 6 A MA ( q ) process is invertible if y t = δ + θ q ( L ) w t can be rewritten as an exclusively AR process (of possibly infinite order), i.e. ϕ ( L ) y t = α + w t . Conversely, an AR ( p ) process is stationary if ϕ p ( L ) y t = δ + w t can be y t = δ + θ ( L ) w t . So using our results w.r.t. ϕ ( L ) it follows that if all of the roots of θ q ( L ) are

  9. Differencing 7

  10. Difference operator We will need to define one more notational tool for indicating differencing just like the lag operator we will indicate repeated applications of this operator using exponents 8 ∆ y t = y t − y t − 1 ∆ 2 y t = ∆(∆ y t ) = (∆ y t ) − (∆ y t − 1 ) = ( y t − y t − 1 ) − ( y t − 1 − y t − 2 ) = y t − 2 y t − 1 + y t − 2 ∆ can also be expressed in terms of the lag operator L , ∆ d = ( 1 − L ) d

  11. Differencing and Stocastic Trend Using the two component time series model stationary component. We have already shown that differencing can address deterministic trend follows a random walk. 9 y t = µ t + x t where µ t is a non-stationary trend component and x t is a mean zero (e.g. µ t = β 0 + β 1 t ). In fact, if µ t is any k -th order polynomial of t then ∆ k y t is stationary. Differencing can also address stochastic trend such as in the case where µ t

  12. Stochastic trend - Example 1 10 Let y t = µ t + w t where w t is white noise and µ t = µ t − 1 + v t with v t stationary as well. Is ∆ y t stationary?

  13. Stochastic trend - Example 2 is it stationary? 11 Let y t = µ t + w t where w t is white noise and µ t = µ t − 1 + v t but now v t = v t − 1 + e t with e t being stationary. Is ∆ y t stationary? What about ∆ 2 y t ,

  14. ARIMA 12

  15. ARIMA Models Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y t , which is most often used to address trend in the data. Box-Jenkins approach: 1. Transform data if necessary to stabilize variance 2. Choose order ( p , d , and q ) of ARIMA model 3. Estimate model parameters ( s and s) 4. Diagnostics 13 ARIMA ( p , d , q ) : ϕ p ( L ) ∆ d y t = δ + θ q ( L ) w t

  16. ARIMA Models Autoregressive integrated moving average are just an extension of an ARMA model to include differencing of degree d to y t , which is most often used to address trend in the data. Box-Jenkins approach: 1. Transform data if necessary to stabilize variance 2. Choose order ( p , d , and q ) of ARIMA model 4. Diagnostics 13 ARIMA ( p , d , q ) : ϕ p ( L ) ∆ d y t = δ + θ q ( L ) w t 3. Estimate model parameters ( ϕ s and θ s)

  17. Using forecast - random walk with drift ## BIC=1395.31 AICc=1386.91 ## AIC=1386.88 log likelihood=-691.44 ## sigma^2 estimated as 0.9323: ## 0.0431 ## s.e. 0.0641 drift Some of R’s base timeseries handling is a bit wonky, the forecast package ## ## Coefficients: ## ## ARIMA(0,1,0) with drift ## Series: rwd Arima (rwd, order = c (0,1,0), include.constant = TRUE) library (forecast) rwd = arima.sim (n=500, model= list (order= c (0,1,0)), mean=0.1) offers some useful alternatives and additional functionality. 14

  18. EDA 15 40 3 2 30 1 diff(rwd) rwd 20 0 −1 10 −2 −3 0 0 100 200 300 400 500 0 100 200 300 400 500 0.10 0.8 ACF ACF 0.00 0.4 −0.10 0.0 0 5 10 15 20 25 0 5 10 15 20 25

  19. Over differencing 16 0.5 4 2 0.3 diff(rwd, 2) ACF 0 0.1 −2 −0.1 −4 0 100 200 300 400 500 0 5 10 15 20 25 0.6 4 2 0.4 diff(rwd, 3) ACF 0 0.2 −2 0.0 −4 0 100 200 300 400 500 0 5 10 15 20 25

  20. AR or MA? 17 0 60 −5 −10 40 ts1 −15 ts2 20 −20 −25 0 −30 0 50 100 150 200 250 0 50 100 150 200 250

  21. EDA 18 ts2 ts1 0 20 40 60 −30 −20 −10 0 0 0 50 50 100 100 150 150 200 200 250 250 ACF ACF −0.2 0.2 0.6 1.0 −0.2 0.2 0.6 1.0 5 5 10 10 15 15 20 20 Partial ACF Partial ACF −0.2 0.2 0.6 1.0 −0.2 0.2 0.6 1.0 5 5 10 10 15 15 20 20

  22. ts1 - Finding d 19 Partial ACF ACF diff(ts1) −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −3 −1 1 3 0 50 5 5 100 10 10 d=1 150 15 15 200 20 20 250 Partial ACF ACF diff(ts1, 2) −0.4 0.0 0.4 −0.2 0.2 0.6 −6 −2 0 2 4 0 50 5 5 100 10 10 d=2 150 15 15 200 20 20 250 Partial ACF ACF diff(ts1, 3) −0.4 0.0 0.4 0.8 −0.2 0.2 0.6 −5 0 5 0 50 5 5 100 10 10 d=3 150 15 15 200 20 20 250

  23. ts2 - Finding d 20 Partial ACF ACF diff(ts2) −0.2 0.2 0.6 −0.2 0.2 0.6 −3 −1 1 2 3 4 0 50 5 5 100 10 10 d=1 150 15 15 200 20 20 250 Partial ACF ACF diff(ts2, 2) −0.2 0.2 0.6 −0.2 0.2 0.6 −6 −2 2 4 6 0 50 5 5 100 10 10 d=2 150 15 15 200 20 20 250 Partial ACF ACF diff(ts2, 3) −0.2 0.2 0.6 −0.2 0.2 0.6 −5 0 5 0 50 5 5 100 10 10 d=3 150 15 15 200 20 20 250

  24. ts1 - Models 748.65 747.55 758.12 1 1 0 747.61 754.65 1 1 1 759.21 1 0 1 1 764.98 772.02 0 1 0 800.43 803.95 0 2 p 1 d q AIC BIC 0 1 2 729.43 740.00 1 2 758.38 731.23 745.31 2 1 2 731.57 749.18 2 1 1 744.29 21

  25. ts2 - Models 754.66 686.38 696.95 1 1 0 719.16 726.20 0 1 2 765.22 1 0 1 1 804.44 811.48 0 1 0 890.32 893.85 1 1 p 1 d q AIC BIC 2 1 0 683.12 693.68 1 2 702.67 683.25 697.34 2 1 1 683.83 697.92 2 1 2 685.06 22

  26. ts1 - Model Choice ## s.e. BIC=740 AICc=729.53 ## AIC=729.43 log likelihood=-361.72 ## sigma^2 estimated as 1.064: ## 0.0622 0.0547 0.4319 Arima (ts1, order = c (0,1,2)) 0.4138 ## ma2 ma1 ## ## Coefficients: ## ## ARIMA(0,1,2) ## Series: ts1 23

  27. ts2 - Model Choice ## s.e. BIC=693.68 AICc=683.22 ## AIC=683.12 log likelihood=-338.56 ## sigma^2 estimated as 0.8822: ## 0.0587 0.0587 0.3770 Arima (ts2, order = c (2,1,0)) 0.4392 ## ar2 ar1 ## ## Coefficients: ## ## ARIMA(2,1,0) ## Series: ts2 24

  28. Residuals 25 ts1 Residuals 0.2 0.2 3 Partial ACF ts1_resid 1 ACF 0.0 0.0 −1 −0.2 −0.2 −3 0 50 100 150 200 250 5 10 15 20 5 10 15 20 ts2 Residuals 0.2 0.2 3 Partial ACF 2 ts2_resid 1 ACF 0.0 0.0 0 −2 −0.2 −0.2 0 50 100 150 200 250 5 10 15 20 5 10 15 20

  29. Electrical Equipment Sales 26

  30. Data 27 elec_sales 110 100 90 80 2000 2005 2010 0.6 0.6 PACF ACF 0.2 0.2 −0.2 −0.2 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Lag Lag

  31. 1st order differencing 28 diff(elec_sales, 1) 10 5 0 −5 −10 2000 2005 2010 0.3 0.3 0.1 0.1 PACF ACF −0.1 −0.1 −0.3 −0.3 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Lag Lag

  32. 2nd order differencing 29 diff(elec_sales, 2) 10 5 0 −5 −10 2000 2005 2010 0.4 0.4 0.2 0.2 PACF ACF 0.0 0.0 −0.2 −0.2 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Lag Lag

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend