lecture 14
play

Lecture 14 Covariance Functions 3/08/2018 1 More on Covariance - PowerPoint PPT Presentation

Lecture 14 Covariance Functions 3/08/2018 1 More on Covariance Functions 2 Nugget Covariance 3 ( , ) = 2 1 {=0} where = | | 2 1.00 1 0.75 draw 0 Draw 1 C


  1. Lecture 14 Covariance Functions 3/08/2018 1

  2. More on Covariance Functions 2

  3. Nugget Covariance 3 ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 1 {โ„Ž=0} where โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ | 2 1.00 1 0.75 draw 0 Draw 1 C 0.50 y Draw 2 โˆ’1 0.25 โˆ’2 0.00 0 5 10 15 20 0 5 10 15 20 h x

  4. (- / Power / Square) Exponential Covariance 4 ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 exp (โˆ’(โ„Ž ๐‘š) ๐‘ž ) where โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ | Covariance โˆ’ l=12, sigma2=1 Exponential 1.00 Cov 2 0.75 Exp 0 C 0.50 y Pow Exp (p=1.5) 0.25 Sq Exp โˆ’2 0.00 โˆ’4 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 h x Powered Exponential (p=1.5) Square Exponential 1 2 0 0 y y โˆ’1 โˆ’2 โˆ’2 โˆ’3 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 x x

  5. Matern Covariance โˆš 2๐œ‰ โ„Ž โ‹… ๐‘š) where โ„Ž = |๐‘ข ๐‘— โˆ’๐‘ข ๐‘˜ | 5 2๐œ‰ โ„Ž โ‹… ๐‘š) โˆš ๐œ‰ ๐ฟ ๐œ‰ ( ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 2 1โˆ’๐œ‰ ฮ“(๐œ‰) ( Covariance โˆ’ l=2, sigma2=1 Matern โˆ’ v=1/2 1.00 2 0.75 1 v=1/2 C 0.50 y 0 v=3/2 โˆ’1 v=5/2 0.25 โˆ’2 0.00 0 2 4 6 0 2 4 6 h x Matern โˆ’ v=3/2 Matern โˆ’ v=5/2 1 2 0 1 y y โˆ’1 0 โˆ’2 โˆ’1 โˆ’3 0 2 4 6 0 2 4 6 x x

  6. Matern Covariance โ€ข A Gaussian process with Matรฉrn covariance has sample functions that are โŒˆ๐œ‰ โˆ’ 1โŒ‰ times differentiable. (product of an exponential and a polynomial of order ๐‘ž ). โ€ข When ๐œ‰ = 1/2 the Matern is equivalent to the exponential covariance. โ€ข As ๐œ‰ โ†’ โˆž the Matern converges to the square exponential covariance. โ€ข A Gaussian process with Matรฉrn covariance has paths that are โŒˆ๐œ‰โŒ‰ โˆ’ 1 times differentiable. 6 โ€ข ๐ฟ ๐œ‰ is the modified Bessel function of the second kind. โ€ข When ๐œ‰ = 1/2 + ๐‘ž for ๐‘ž โˆˆ N + then the Matern has a simplified form

  7. Rational Quadratic Covariance โˆ’๐›ฝ 7 ) ๐›ฝ ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 (1 + โ„Ž 2 ๐‘š 2 where โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ | Covariance โˆ’ l=12, sigma2=1 Rational Quadratic โˆ’ alpha=1 1.00 1 0.75 0 alpha=1 0.50 y alpha=3 โˆ’1 alpha=10 0.25 โˆ’2 0.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 h x Rational Quadratic โˆ’ alpha=10 Rational Quadratic โˆ’ alpha=100 2 1 1 y y 0 0 โˆ’1 โˆ’1 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 x x

  8. Rational Quadratic Covariance โ€ข is a scaled mixture of squared exponential covariance functions with different characteristic length-scales ( ๐‘š ). โ€ข As ๐›ฝ โ†’ โˆž the rational quadratic converges to the square exponential covariance. โ€ข Has sample functions that are infinitely differentiable for any value of ๐›ฝ 8

  9. Spherical Covariance 0 where โ„Ž = |๐‘ข ๐‘— โˆ’๐‘ข ๐‘˜ | otherwise 9 2 (โ„Ž โ‹… ๐‘š) 3 )) ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = {๐œ 2 (1 โˆ’ 3 2 โ„Ž โ‹… ๐‘š + 1 if 0 < โ„Ž < 1/๐‘š Covariance โˆ’ sigma2=1 Spherical โˆ’ l=1 1.00 1 0.75 0 l=1 0.50 y l=3 โˆ’1 0.25 l=10 โˆ’2 โˆ’3 0.00 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 h x Spherical โˆ’ l=3 Spherical โˆ’ l=10 2 2 1 y y 0 0 โˆ’1 โˆ’2 โˆ’2 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 x x

  10. Periodic Covariance 10 ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 exp (โˆ’2 ๐‘š 2 sin 2 (๐œŒโ„Ž ๐‘ž )) where โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ | Covariance โˆ’ l=2, sigma2=1 Periodic โˆ’ p=1 1.00 1 forcats::as_factor(Cov) 0.75 p=1 0 0.50 y p=2 0.25 p=3 โˆ’1 0.00 0 1 2 3 4 0 2 4 6 h x Periodic โˆ’ p=2 Periodic โˆ’ p=3 1 2 1 0 y y 0 โˆ’1 โˆ’1 โˆ’2 โˆ’2 0 2 4 6 0 2 4 6 x x

  11. Linear Covariance ๐ท๐‘๐‘ค(๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = ๐œ 2 11 ๐‘ + ๐œ 2 ๐‘ค (๐‘ข ๐‘— โˆ’ ๐‘‘)(๐‘ข ๐‘˜ โˆ’ ๐‘‘) 1.0 0.5 0.0 y โˆ’0.5 โˆ’1.0 0.00 0.25 0.50 0.75 1.00 x

  12. Combining Covariances If we definite two valid covariance functions, ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) and ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) then the following are also valid covariance functions, ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) + ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) ร— ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) 12

  13. Linear ร— Linear โ†’ Quadratic 13 ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = 1 + 2 (๐‘ข ๐‘— ร— ๐‘ข ๐‘˜ ) ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = 2 + 1 (๐‘ข ๐‘— ร— ๐‘ข ๐‘˜ ) Cov_a * Cov_b 5 0 y โˆ’5 โˆ’10 โˆ’2 โˆ’1 0 1 2 x

  14. 14 Linear ร— Periodic ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = 1 + 1 (๐‘ข ๐‘— ร— ๐‘ข ๐‘˜ ) ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = exp (โˆ’2 sin 2 (2๐œŒ โ„Ž)) Cov_a * Cov_b 2 0 y โˆ’2 โˆ’4 0 1 2 3 x

  15. Linear + Periodic 15 ๐ท๐‘๐‘ค ๐‘ (๐‘ง ๐‘ข ๐‘— , ๐‘ง ๐‘ข ๐‘˜ ) = 1 + 1 (๐‘ข ๐‘— ร— ๐‘ข ๐‘˜ ) ๐ท๐‘๐‘ค ๐‘ (โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ |) = exp (โˆ’2 sin 2 (2๐œŒ โ„Ž)) Cov_a + Cov_b 0 โˆ’1 draw โˆ’2 Draw 1 y Draw 2 โˆ’3 โˆ’4 โˆ’5 0 1 2 3 x

  16. Sq Exp ร— Periodic โ†’ Locally Periodic 16 ๐ท๐‘๐‘ค ๐‘ (โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ |) = exp (โˆ’(1/3)โ„Ž 2 ) ๐ท๐‘๐‘ค ๐‘ (โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ |) = exp (โˆ’2 sin 2 (๐œŒ โ„Ž)) Cov_a * Cov_b 2 1 0 y โˆ’1 โˆ’2 0 2 4 6 x

  17. Sq Exp (short) + Sq Exp (long) โˆš 3/2)โ„Ž 2 ) 17 3โ„Ž 2 ) โˆš ๐ท๐‘๐‘ค ๐‘ (โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ |) = (1/4) exp (โˆ’4 ๐ท๐‘๐‘ค ๐‘ (โ„Ž = |๐‘ข ๐‘— โˆ’ ๐‘ข ๐‘˜ |) = exp (โˆ’( Cov_a + Cov_b 1 0 y โˆ’1 โˆ’2 0.0 2.5 5.0 7.5 10.0 x

  18. Sq Exp (short) + Sq Exp (long) (Seen another way) 18 Cov_A (short) Cov_B (long) Cov_A + Cov_B 2 1 0 y โˆ’1 โˆ’2 โˆ’3 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 x

  19. BDA3 example 19

  20. BDA3 http://research.cs.aalto.fi/pml/software/gpstuff/demo_births.shtml 20

  21. Births (one year) 1. Smooth long term trend ( sq exp cov ) 2. Seven day periodic trend with decay ( periodic ร— sq exp cov ) 3. Constant mean 21

  22. Component Contributions We can view our GP in the following ways, but with appropriate conditioning we can also think of ๐ณ as being the sum of multipe independent GPs ๐ณ = ๐‚ + ๐‘ฅ 1 (๐ฎ) + ๐‘ฅ 2 (๐ฎ) + ๐‘ฅ 3 (๐ฎ) where ๐‘ฅ 1 (๐ฎ) โˆผ ๐’ช(0, ๐šป 1 ) ๐‘ฅ 2 (๐ฎ) โˆผ ๐’ช(0, ๐šป 2 ) ๐‘ฅ 3 (๐ฎ) โˆผ ๐’ช(0, ๐œ 2 ๐‰ ) 22 ๐ณ โˆผ ๐’ช(๐‚, ๐šป 1 + ๐šป 2 + ๐œ 2 ๐‰ )

  23. Decomposition of Covariance Components 0 โŽฃ ฮฃ 1 ฮฃ 2 ฮฃ 1 ฮฃ 1 0 ฮฃ 2 ฮฃ 2 โŽฆ โŽค โŽฅ โŽฆ โŽž โŽŸ โŽ  therefore ๐‘ข โŽก โŽข โŽฅ โŽœ โŽข โŽฃ ๐‘ง ๐‘ฅ 1 ๐‘ฅ 2 โŽค โŽฅ โŽฆ 23 โŽ โŽก โŽข โŽฃ ๐‚ 0 0 โŽค ฮฃ 1 + ฮฃ 2 + ๐œ 2 ๐‰ โˆผ ๐’ช โŽ› , โŽก ๐‘ฅ 1 | ๐ณ, ๐‚, ๐œพ โˆผ ๐’ช(๐‚ ๐‘‘๐‘๐‘œ๐‘’ , ๐šป ๐‘‘๐‘๐‘œ๐‘’ ) ๐‚ ๐‘‘๐‘๐‘œ๐‘’ = 0 + ฮฃ 1 (ฮฃ 1 + ฮฃ 2 + ๐œ 2 ๐ฝ) โˆ’1 (๐ณ โˆ’ ๐‚) ๐šป ๐‘‘๐‘๐‘œ๐‘’ = ฮฃ 1 โˆ’ ฮฃ 1 (ฮฃ 1 + ฮฃ 2 + ๐œ 2 ๐‰) โˆ’1 ฮฃ 1

  24. Births (multiple years) 1. slowly changing trend ( sq exp cov ) 2. small time scale correlating noise ( sq exp cov ) 3. 7 day periodical component capturing day of week effect ( periodic ร— sq exp cov ) 4. 365.25 day periodical component capturing day of year effect ( periodic ร— sq exp cov ) 5. component to take into account the special days and interaction with weekends ( linear cov ) 6. independent Gaussian noise ( nugget cov ) 7. constant mean 24

  25. Mauna Loa Exampel 25

  26. 26 Atmospheric CO 2 390 Source NOAA y 360 Scripps (co2 in R) 330 1960 1980 2000 x

  27. GP Model Based on Rasmussen 5.4.3 (we are using slightly different data and โˆ’๐›ฝ ) ๐›ฝ 27 ๐‘ง ฬ„ parameterization) ๐ณ โˆผ ๐’ช(๐‚, ๐šป 1 + ๐šป 2 + ๐šป 3 + ๐šป 4 + ๐œ 2 I ) {๐‚} ๐‘— = {๐šป 1 } ๐‘—๐‘˜ = ๐œ 2 1 exp (โˆ’(๐‘š 1 โ‹… ๐‘’ ๐‘—๐‘˜ ) 2 ) 2 exp (โˆ’(๐‘š 2 โ‹… ๐‘’ ๐‘—๐‘˜ ) 2 ) exp (โˆ’2 (๐‘š 3 ) 2 sin 2 (๐œŒ ๐‘’ ๐‘—๐‘˜ /๐‘ž)) {๐šป 2 } ๐‘—๐‘˜ = ๐œ 2 3 (1 + (๐‘š 4 โ‹… ๐‘’ ๐‘—๐‘˜ ) 2 {๐šป 3 } ๐‘—๐‘˜ = ๐œ 2 {๐šป 4 } ๐‘—๐‘˜ = ๐œ 2 4 exp (โˆ’(๐‘š 5 โ‹… ๐‘’ ๐‘—๐‘˜ ) 2 )

  28. JAGS Model } }โ€ alpha ~ dt(0, 2.5, 1) T(0,) } l[i] ~ dt(0, 2.5, 1) T(0,) sigma2[i] ~ dt(0, 2.5, 1) T(0,) for(i in 1:5){ } Sigma[i,i] <- sigma2[1] + sigma2[2] + sigma2[3] + sigma2[4] + sigma2[5] for (i in 1:length(y)) { } ml_model = โ€model{ Sigma[j,i] <- Sigma[i,j] Sigma[i,j] <- k1[i,j] + k2[i,j] + k3[i,j] + k4[i,j] k4[i,j] <- sigma2[4] * exp(- pow(l[5] * d[i,j],2)) k3[i,j] <- sigma2[3] * pow(1+pow(l[4] * d[i,j],2)/alpha, -alpha) k2[i,j] <- sigma2[2] * exp(- pow(l[2] * d[i,j],2) - 2 * pow(l[3] * sin(pi*d[i,j] / per), 2)) k1[i,j] <- sigma2[1] * exp(- pow(l[1] * d[i,j],2)) for (j in (i+1):length(y)) { for (i in 1:(length(y)-1)) { y ~ dmnorm(mu, inverse(Sigma)) 28

  29. Diagnostics 29 sigma2[1] sigma2[2] sigma2[3] sigma2[4] sigma2[5] 0.8 40 0.04 2.0 6000 0.6 30 1.5 4000 0.03 0.4 20 1.0 2000 0.2 10 0.5 0.02 0 0.0 0.0 0 l[1] l[2] l[3] l[4] l[5] 0.020 1.2 6 0.06 0.9 estimate 0.015 1.0 0.6 4 0.04 0.010 0.8 0.3 2 0.005 0.02 0.6 0.0 0 250500750 1000 0 250500750 1000 0 250500750 1000 0 250500750 1000 alpha 8 6 4 2 0 0 250500750 1000 .iteration

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend