lecture 11
play

Lecture 11 Fitting ARIMA Models 10/10/2018 1 Model Fitting - PowerPoint PPT Presentation

Lecture 11 Fitting ARIMA Models 10/10/2018 1 Model Fitting Fitting ARIMA For an (, , ) model Requires that the data be stationary after differencing Handling is straight forward, just difference the


  1. Lecture 11 Fitting ARIMA Models 10/10/2018 1

  2. Model Fitting

  3. Fitting ARIMA For an 𝐡𝑆𝐽𝑁𝐡(π‘ž, 𝑒, π‘Ÿ) model β€’ Requires that the data be stationary after differencing β€’ Handling 𝑒 is straight forward, just difference the original data 𝑒 times (leaving π‘œ βˆ’ 𝑒 observations) 𝑧 β€² β€’ After differencing, fit an 𝐡𝑆𝑁𝐡(π‘ž, π‘Ÿ) model to 𝑧 β€² 𝑒 . β€’ To keep things simple we’ll assume π‘₯ 𝑒 𝑗𝑗𝑒 ∼ π’ͺ(0, 𝜏 2 π‘₯ ) 2 𝑒 = Ξ” 𝑒 𝑧 𝑒

  4. In general, the vector 𝐳 = (𝑧 1 , 𝑧 2 , … , 𝑧 𝑒 ) β€² will have a multivariate normal distribution with mean {𝝂} 𝑗 = 𝐹(𝑧 𝑗 ) = 𝐹(𝑧 𝑒 ) and covariance 𝚻 where {𝚻} π‘—π‘˜ = 𝛿(𝑗 βˆ’ π‘˜) . 2(𝐳 βˆ’ 𝝂) β€² Ξ£ βˆ’1 (𝐳 βˆ’ 𝝂)) (2𝜌) 𝑒/2 det (𝚻) 1/2 Γ— exp (βˆ’1 MLE - Stationarity & iid normal errors normal. The joint density of 𝐳 is given by 𝑔 𝐳 (𝐳) = 1 3 If both of these conditions are met, then the time series 𝑧 𝑒 will also be

  5. MLE - Stationarity & iid normal errors normal. The joint density of 𝐳 is given by 𝑔 𝐳 (𝐳) = 1 3 If both of these conditions are met, then the time series 𝑧 𝑒 will also be In general, the vector 𝐳 = (𝑧 1 , 𝑧 2 , … , 𝑧 𝑒 ) β€² will have a multivariate normal distribution with mean {𝝂} 𝑗 = 𝐹(𝑧 𝑗 ) = 𝐹(𝑧 𝑒 ) and covariance 𝚻 where {𝚻} π‘—π‘˜ = 𝛿(𝑗 βˆ’ π‘˜) . 2(𝐳 βˆ’ 𝝂) β€² Ξ£ βˆ’1 (𝐳 βˆ’ 𝝂)) (2𝜌) 𝑒/2 det (𝚻) 1/2 Γ— exp (βˆ’1

  6. AR

  7. Fitting 𝐡𝑆(1) π‘₯ π‘₯ . the MLE estimate for πœ€ , 𝜚 , and 𝜏 2 but that does not make it easy to write down a (simplified) closed form for Using these properties it is possible to write the distribution of 𝐳 as a MVN π‘₯ 𝜏 2 1 βˆ’ 𝜚 2 𝜏 2 π‘Š 𝑏𝑠(𝑧 𝑒 ) = 1 βˆ’ 𝜚 πœ€ 𝐹(𝑧 𝑒 ) = π‘₯ , we know We need to estimate three parameters: πœ€ , 𝜚 , and 𝜏 2 4 𝑧 𝑒 = πœ€ + 𝜚 𝑧 π‘’βˆ’1 + π‘₯ 𝑒 𝛿 β„Ž = 1 βˆ’ 𝜚 2 𝜚 |β„Ž|

  8. Conditional Density 𝑔 𝑧 𝑒 |𝑧 π‘’βˆ’1 (𝑧 𝑒 ) = ) π‘₯ 𝜏 2 2 exp (βˆ’1 π‘₯ √2𝜌 𝜏 2 1 π‘₯ ) We can also rewrite the density as follows, π‘₯ 𝜏 2 where, 5 𝑔 𝐳 = 𝑔 𝑧 𝑒 , 𝑧 π‘’βˆ’1 , …, 𝑧 2 , 𝑧 1 = 𝑔 𝑧 𝑒 | 𝑧 π‘’βˆ’1 , …, 𝑧 2 , 𝑧 1 𝑔 𝑧 π‘’βˆ’1 |𝑧 π‘’βˆ’2 , …, 𝑧 2 , 𝑧 1 β‹― 𝑔 𝑧 2 |𝑧 1 𝑔 𝑧 1 = 𝑔 𝑧 𝑒 | 𝑧 π‘’βˆ’1 𝑔 𝑧 π‘’βˆ’1 |𝑧 π‘’βˆ’2 β‹― 𝑔 𝑧 2 |𝑧 1 𝑔 𝑧 1 𝑧 1 ∼ π’ͺ (πœ€, 1 βˆ’ 𝜚 2 ) 𝑧 𝑒 |𝑧 π‘’βˆ’1 ∼ π’ͺ (πœ€ + 𝜚 𝑧 π‘’βˆ’1 , 𝜏 2 (𝑧 𝑒 βˆ’ πœ€ + 𝜚 𝑧 π‘’βˆ’1 ) 2

  9. Log likelihood of AR(1) 𝜏 2 𝑗=2 βˆ‘ π‘œ π‘₯ 𝜏 2 1 + 𝑗=2 βˆ‘ π‘œ π‘₯ 𝜏 2 1 π‘₯ 2((π‘œ βˆ’ 1) log 2𝜌 + (π‘œ βˆ’ 1) log 𝜏 2 6 β„“(πœ€, 𝜚, 𝜏 2 1 log 𝑔 𝑧 𝑗 |𝑧 π‘—βˆ’1 𝑗=2 βˆ‘ 𝑒 𝜏 2 π‘₯ log 𝑔 𝑧 𝑒 |𝑧 π‘’βˆ’1 (𝑧 𝑒 ) = βˆ’ 1 2 ( log 2𝜌 + log 𝜏 2 π‘₯ + (𝑧 𝑒 βˆ’ πœ€ + 𝜚 𝑧 π‘’βˆ’1 ) 2 ) π‘₯ ) = log 𝑔 𝐳 = log 𝑔 𝑧 1 + = βˆ’ 1 π‘₯ βˆ’ log (1 βˆ’ 𝜚 2 ) + (1 βˆ’ 𝜚 2 ) 2 ( log 2𝜌 + log 𝜏 2 (𝑧 1 βˆ’ πœ€) 2 ) βˆ’ 1 π‘₯ + (𝑧 𝑗 βˆ’ πœ€ + 𝜚 𝑧 π‘—βˆ’1 ) 2 ) = βˆ’ 1 2 (π‘œ log 2𝜌 + π‘œ log 𝜏 2 π‘₯ βˆ’ log (1 βˆ’ 𝜚 2 ) ((1 βˆ’ 𝜚 2 )(𝑧 1 βˆ’ πœ€) 2 + (𝑧 𝑗 βˆ’ πœ€ + 𝜚 𝑧 π‘—βˆ’1 ) 2 ))

  10. AR(1) Example with 𝜚 = 0.75 , πœ€ = 0.5 , and 𝜏 2 7 π‘₯ = 1 , ar1 4 2 0 βˆ’2 0 100 200 300 400 500 0.6 0.6 0.4 0.4 PACF ACF 0.2 0.2 0.0 0.0 0 5 10 15 20 25 0 5 10 15 20 25 Lag Lag

  11. Arima MAE BIC=1433.35 ## ## Training set error measures: ## ME RMSE MPE ## AIC=1420.71 MAPE MASE ## Training set 0.005333274 0.9950158 0.7997576 -984.9413 1178.615 0.9246146 ## ACF1 ## Training set -0.04437489 AICc=1420.76 log likelihood=-707.35 ar1_arima = forecast:: Arima (ar1, order = c (1,0,0)) ar1 summary (ar1_arima) ## Series: ar1 ## ARIMA(1,0,0) with non-zero mean ## ## Coefficients: ## mean ## sigma^2 estimated as 0.994: ## 0.7312 1.8934 ## s.e. 0.0309 0.1646 ## 8

  12. lm ## Signif. codes: 0.07328 7.144 3.25e-12 *** ## lag(y) 0.72817 0.03093 23.539 < 2e-16 *** ## --- 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## (Intercept) ## ## Residual standard error: 0.9949 on 497 degrees of freedom ## (1 observation deleted due to missingness) ## Multiple R-squared: 0.5272, Adjusted R-squared: 0.5262 ## F-statistic: 554.1 on 1 and 497 DF, p-value: < 2.2e-16 0.52347 Estimate Std. Error t value Pr(>|t|) d = data_frame (y = ar1 %>% strip_attrs (), t= seq_along (ar1)) ## summary (ar1_lm) ## ## Call: ## lm(formula = y ~ lag(y), data = d) ## ## Residuals: ## Min 1Q Median 3Q Max ## -3.2772 -0.6880 0.0785 0.6819 2.5704 ## ## Coefficients: 9 ar1_lm = lm (y~ lag (y), data=d)

  13. Bayesian AR(1) Model mu = delta/(1-phi) }” sigma2_w <- 1/tau tau ~ dgamma(0.001,0.001) phi ~ dnorm(0,1) delta ~ dnorm(0,1/1000) # priors } ar1_model = ”model{ y_hat[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) y[t] ~ dnorm(delta + phi*y[t-1], 1/sigma2_w) for (t in 2:length(y)) { y_hat[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) y[1] ~ dnorm(delta/(1-phi), (sigma2_w/(1-phi^2))^-1) # likelihood 10

  14. Chains 11 0.7 0.6 delta 0.5 0.4 0.3 .variable 0.80 .value delta 0.75 phi phi 0.70 sigma2_w 0.65 1.2 1.1 sigma2_w 1.0 0.9 0.8 0 1000 2000 3000 4000 5000 .iteration

  15. Posteriors 12 delta phi sigma2_w 10 model density ARIMA lm truth 5 0 0.3 0.4 0.5 0.6 0.7 0.8 0.65 0.70 0.75 0.80 0.8 0.9 1.0 1.1 1.2

  16. Predictions 13 4 Model y 2 lm y ARIMA bayes 0 βˆ’2 0 100 200 300 400 500 t

  17. Faceted 14 y lm 4 2 0 Model βˆ’2 y lm y ARIMA bayes ARIMA bayes 4 2 0 βˆ’2 0 100 200 300 400 500 0 100 200 300 400 500 t

  18. Regressing 𝑧 𝑒 on 𝑧 π‘’βˆ’π‘ž , … , 𝑧 π‘’βˆ’1 gets us an approximate solution, but it Fitting AR(p) - Lagged Regression We can rewrite the density as follows, 𝑔(𝐳) = 𝑔(𝑧 𝑒 , 𝑧 π‘’βˆ’1 , … , 𝑧 2 , 𝑧 1 ) = 𝑔(𝑧 π‘œ |𝑧 π‘œβˆ’1 , … , 𝑧 π‘œβˆ’π‘ž ) β‹― 𝑔(𝑧 π‘ž+1 |𝑧 π‘ž , … , 𝑧 1 )𝑔(𝑧 π‘ž , … , 𝑧 1 ) ignores the 𝑔(𝑧 1 , 𝑧 2 , … , 𝑧 π‘ž ) part of the likelihood. How much does this matter (vs. using the full likelihood)? β€’ If π‘ž is near to π‘œ then probably a lot β€’ If π‘ž << π‘œ then probably not much 15

  19. Fitting AR(p) - Lagged Regression We can rewrite the density as follows, 𝑔(𝐳) = 𝑔(𝑧 𝑒 , 𝑧 π‘’βˆ’1 , … , 𝑧 2 , 𝑧 1 ) = 𝑔(𝑧 π‘œ |𝑧 π‘œβˆ’1 , … , 𝑧 π‘œβˆ’π‘ž ) β‹― 𝑔(𝑧 π‘ž+1 |𝑧 π‘ž , … , 𝑧 1 )𝑔(𝑧 π‘ž , … , 𝑧 1 ) ignores the 𝑔(𝑧 1 , 𝑧 2 , … , 𝑧 π‘ž ) part of the likelihood. How much does this matter (vs. using the full likelihood)? β€’ If π‘ž is near to π‘œ then probably a lot β€’ If π‘ž << π‘œ then probably not much 15 Regressing 𝑧 𝑒 on 𝑧 π‘’βˆ’π‘ž , … , 𝑧 π‘’βˆ’1 gets us an approximate solution, but it

  20. Fitting AR(p) - Method of Moments Recall for an AR(p) process, 𝛿(0) = 𝜏 2 𝛿(β„Ž) = 𝜚 1 𝛿(β„Ž βˆ’ 1) + 𝜚 2 𝛿(β„Ž βˆ’ 2) + … 𝜚 π‘ž 𝛿(β„Ž βˆ’ π‘ž) We can rewrite the first equation in terms of 𝜏 2 π‘₯ , 𝜏 2 these are called the Yule-Walker equations. 16 π‘₯ + 𝜚 1 𝛿(1) + 𝜚 2 𝛿(2) + … + 𝜚 π‘ž 𝛿(π‘ž) π‘₯ = 𝛿(0) βˆ’ 𝜚 1 𝛿(1) βˆ’ 𝜚 2 𝛿(2) βˆ’ … βˆ’ 𝜚 π‘ž 𝛿(π‘ž)

  21. 𝜹 π‘ž which π‘₯ = 𝛿(0) βˆ’ Yule-Walker Μ‚ Μ‚ can plug in and solve for 𝝔 and 𝜏 2 π‘₯ , Μ‚ 𝝔 = Μ‚ 𝚫 π‘ž βˆ’1 𝜹 π‘ž = (𝛿(1), 𝛿(2), … , 𝛿(π‘ž)) β€² 𝜏 2 Μ‚ 𝜹 π‘ž β€² Μ‚ 𝚫 βˆ’1 π‘ž Μ‚ 𝜹 π‘ž If we estimate the covariance structure from the data we obtain π‘žΓ—1 These equations can be rewritten into matrix notation as follows 1Γ—1 𝚫 π‘ž π‘žΓ—π‘ž 𝝔 π‘žΓ—1 = 𝜹 π‘ž π‘žΓ—1 𝜏 2 π‘₯ 1Γ—1 = 𝛿(0) βˆ’ 𝝔 β€² 𝜹 π‘ž 1Γ—π‘ž 𝜹 πͺ π‘žΓ—1 where 𝚫 πͺ π‘žΓ—π‘ž = {𝛿(π‘˜ βˆ’ 𝑙)} π‘˜,𝑙 𝝔 π‘žΓ—1 = (𝜚 1 , 𝜚 2 , … , 𝜚 π‘ž ) β€² 17

  22. Yule-Walker Μ‚ If we estimate the covariance structure from the data we obtain Μ‚ can plug in and solve for 𝝔 and 𝜏 2 π‘₯ , Μ‚ 𝝔 = Μ‚ 𝚫 π‘ž βˆ’1 𝜹 π‘ž These equations can be rewritten into matrix notation as follows 𝜏 2 Μ‚ 𝜹 π‘ž β€² Μ‚ 𝚫 βˆ’1 π‘ž Μ‚ 𝜹 π‘ž = (𝛿(1), 𝛿(2), … , 𝛿(π‘ž)) β€² π‘žΓ—1 𝜹 π‘ž = (𝜚 1 , 𝜚 2 , … , 𝜚 π‘ž ) β€² 𝚫 π‘ž π‘žΓ—π‘ž 𝝔 π‘žΓ—1 = 𝜹 π‘ž π‘žΓ—1 𝜏 2 π‘₯ 1Γ—1 = 𝛿(0) 1Γ—1 βˆ’ 𝝔 β€² 1Γ—π‘ž 𝜹 πͺ π‘žΓ—1 where 𝚫 πͺ π‘žΓ—π‘ž = {𝛿(π‘˜ βˆ’ 𝑙)} π‘˜,𝑙 𝝔 π‘žΓ—1 17 𝜹 π‘ž which π‘₯ = 𝛿(0) βˆ’

  23. ARMA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend