layout technique for double gate silicon nanowire fet
play

Layout Technique for Double-Gate Silicon Nanowire FET with an - PowerPoint PPT Presentation

Layout Technique for Double-Gate Silicon Nanowire FET with an Efficient Sea-of-Tiles Architecture Shashikanth Bobba Prof. Giovanni De Micheli March 25, 2013 Pierre-Emmanuel, Jian Zhang, Luca, Michele, Davide, Prof. Yusuf Leblebici


  1. Layout Technique for Double-Gate Silicon Nanowire FET with an Efficient Sea-of-Tiles Architecture Shashikanth Bobba Prof. Giovanni De Micheli March 25, 2013 Pierre-Emmanuel, Jian Zhang, Luca, Michele, Davide, Prof. Yusuf Leblebici

  2. Functionally Enhanced Device 10nm 32nm 16nm Source Gate Source Drain Gate Gate Source Drain Drain Vertically stacked SiNW FET High-K Metal Gate Tri-gate aka FinFET Enhanced S CG D Control gate Functionality Source Source Drain PG Polarity gate

  3. Double-gate Silicon Nanowire FET S CG D S CG Control gate p-FET Source S D Drain CG Polarity gate PG PG D S CG D n-FET ! Dynamic control on the polarity of the device ! Promising feature for future reconfigurable circuits ! Ambipolar logic circuits

  4. Ambipolar Logic Circuits ! Circuits based on double gate ambipolar transistors with controllable polarity (CNFET, SiNW FET, Graphene, …) ! Optimal for XOR and XNOR dominated circuits CNT-DR8F XOR2 ULM (5,3) K. Mohanram, DAC 12 Only 4 transistors O’Connor, ICECS 07 M-H. Ben Jamaa, PhD Thesis

  5. Motivation XOR2 ?? Fewer transistors for XOR operation Every transistor has two gates to route �

  6. Physical Design Challenges Arithmetic Reconfigurable Universal logic S circuits blocks modules CG PG D Design and Architecture ! Can we use existing layout Logic E techniques? Verification Synthesis D Physical DFM A ! Logic bricks for improved Yield Synthesis Manufacturing Graphene CNFET SiNW FET MoS 2

  7. Outline ! Introduction ! Layout Technique for DG-SiNW FET " Motivation " Layout algorithm for XOR embedded Boolean functions ! Sea-of-Tiles ! Simulation Results ! Conclusion

  8. Symbolic layouts : Dumbell-stick diagrams ! Need for new symbolic layouts for ambipolar circuits Control gate Source Drain !"#$%&%'(") Polarity gate *#&"&$+) !"#$%"&'()$*+' ,"##*,$*-'$"(*$.*%' !"#$%&&'()*+,, !"#$%&%'(") +"(,*&$+) /"&)%0$1'()$*+' ,"##*,$*-'$"(*$.*%'

  9. Layout technique for Unate logic functions ! Negative Unate functions: NAND, NOR, AOI, OAI ! Polarity gates are biased to either Vdd or Gnd -'./0"1,232!,451%, Gnd t 2 t 1 A A t 1 t 2 t 1 t 2 B B Gnd Out Out Gnd B B t 3 t 3 Vdd t 4 t 3 A A t 4 t 4 Vdd Vdd -$./)($0)*(.#"&'/)+#'0) 6,780..9%:;<) 1(")234)#$5)264 ) 5&#+"#7 )

  10. Layout technique for Binate logic functions t 2 t 1 ?(7*.0C)"(,:$+ ) 678,451%, ?@-=)%'/.0) .#/(,' ) t 2 t 1 B t 3 t 4 A A B Y t 3 t 4 B !"#$%&%'(")+"(,*&$+ ) A A B 4(A0.) t 2 t 4 #**"(#;B ) =&7*.&>05)"(,:$+ ) t 1 t 3

  11. Complex gates with embedded XOR/XNOR F1 = (A + B)(C + D) #D !"#$%&%'(")+"(,*&$+)) group D : { t 3 , t 5 } A t 1 t 3 D 8D))))!"#$%&%'(")*#&"&$+) group D : { t 4 , t 6 } C C Gnd t 4 ;D))))!"#$%&%'(")("50"&$+) D group Vdd : { t 7 , t 8 } t 2 B 5D))))!"#$%&%'(");B#&$&$+) group Gnd : { t 1 , t 2 } Gnd F1 t 5 D C C t 6 D Vdd t 7 A B t 8 Vdd ))))))6,780..9%:;<)5&#+"#7 )

  12. Layout Extraction !"#$%&%'(")%&E&$+)F)G#/(,')+0$0"#:($ ) 6,780..9%:;<)5&#+"#7 ) VDD GND

  13. Outline ! Introduction ! Layout Technique for DG-SiNW FET ! Sea-of-Tiles " Tiles as basic blocks " Optimal Tile " Power distribution for SoT ! Simulation Results ! Conclusion

  14. Sea-of-Tiles (SoT)

  15. Layout regularity with Tiles 9.&%, !H()'"#$%&%'(")*#&"%) +"(,*05)'(+0'B0" ) 678-, 232!-,

  16. Sea-of-Tiles (SoT) ! Gate to Tile mapping :51%(, /;, /-, /<, /=, />, /?, :;, :-, 4;, 4-, 6@A-, I$5) -,') J55) I$5) -,') J55) K) KL) ML) M) 6/@A-, I$5) -,') J55) I$5) -,') J55) K) KL) M) ML) 25/B-, -,') J55) -,') -,') 9) I$5) K) M) I$5) J55) 2@A-, J55) 9) -,') -,') I$5) -,') K) M) I$5) J55) C/D-6, J55) -,') J55) I$5) -,') I$5) K) K) I$5) J55) E"F, -N) J55) -O) -O) I$5) -N) K) -N) I$5) J55)

  17. Various logic Tiles as basic building blocks 3 9.&% :;, 9.&% :;G-, 2314%0-'50&*6 ' 9.&% :-, 9.&% :<,

  18. Design flow for determining the Optimal Tile Benchmark Circuits Generate Tiles Physical Synopsys Design Synthesis onto Compiler Area Library of Tiles Sea-of-Tiles TECHNOLOGY MAPPING

  19. Design flow for determining the Optimal Tile Benchmark Circuits Generate Tiles Physical Synopsys Design Synthesis onto Compiler Area Library of Tiles Sea-of-Tiles TECHNOLOGY MAPPING Tile G2 #2 Tile G2 #1 + + P A K ? M + P P + A A Unmapped active area

  20. Result: Impact on Area Area across various benchmarks 2@A#5&.H%B,3A%5 , - 14% - 16% 9.&% :;G-, 9.&% :<, 9.&% :-, 9.&% :;, ! Tile G2 and Tile G1h2 optimal for mapping logic gates, with respect to reduced routing complexity thereby reducing in the overall active area

  21. Sea-of-Tiles Power Distribution… VDD XOR NAND GND NAND2 XOR2 A B Gnd Y Too much requirements B Vdd in wiring VDD A Vdd GND Source: S. Bobba et al , NANOARCH’12

  22. Sea-of-Tiles Power Distribution GND VDD GND GND Lower wiring requirements GND VDD VDD GND VDD VDD GND Source: S. Bobba et al , NANOARCH’12

  23. Outline ! Introduction ! Layout Technique for DG-SiNW FET ! Sea-of-Tiles ! Simulation Results " Arithmetic Circuits " Circuit level Benchmarking ! Conclusion

  24. Case study: Arithmetic Circuits Logic Gates (FO4 delay) Arithmetic Cell Library (31, 5) Parallel counter 22% S CG D Control gate Source Source Wallace tree (54 x 54 multiplier) 38% Drain PG (11, 2)-reduction tree (16 x 16 MAC) 45% Polarity gate (29, 3)-compressor 40% Area 16-bit carry-select adder 22% 22.7% 5-bit ripple-carry adder 0 100 200 300 400 500 600 700 800

  25. Case study: Arithmetic Circuits Logic Gates Arithmetic Cell Library 63.8% (31, 5) Parallel counter 61.8% Wallace tree (54 x 54 multiplier) 57.6% (11, 2)-reduction tree (16 x 16 MAC) 66% (29, 3)-compressor Delay 16-bit carry-select adder 71.7% 66% 5-bit ripple-carry adder 0 10 20 30 2.8x improvement

  26. Circuit Level Benchmarking Benchmark Circuits TCAD-based Generate Tiles table model Physical Synopsys Design Delay Synthesis onto Compiler Encouter Library Sea-of-Tiles Characterizer Leakage TECHNOLOGY MAPPING 1.8x improvement

  27. Outline ! Introduction ! Layout Technique for DG-SiNW FET ! Sea-of-Tiles ! Simulation Results ! Conclusion

  28. Conclusion � ! Proposed a novel layout methodology and algorithm for Boolean functions with embedded XOR ! Showed an efficient implementation of Ambipolar circuits with Sea-of-Tiles design methodology # Area optimal tiles Tile G2 and Tile G1h2 ! Circuit Level Benchmarking # Maximum improvement for Arithmetic circuits (2.8x) # Reduction in Leakage power (16x)

  29. Thank You

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend