large quantile estimation for distributions in the domain
play

Large Quantile Estimation for Distributions in the Domain of - PowerPoint PPT Presentation

Large Quantile Estimation for Distributions in the Domain of Attraction of a Max-Semistable Law Lusa Canto e Castro 1 Sandra Dias 2 1 Department of Statistics University of Lisbon, Portugal 2 Department of Mathematics University of


  1. Large Quantile Estimation for Distributions in the Domain of Attraction of a Max-Semistable Law Luísa Canto e Castro 1 Sandra Dias 2 1 Department of Statistics University of Lisbon, Portugal 2 Department of Mathematics University of Trás-os-Montes e Alto Douro, Portugal 4th Conference on Extreme Value Analysis Gothenburg, August 15-19, 2005 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 1 / 30

  2. Introduction F is in the domain of attraction of a max-stable d.f. G , F ∈ MS ( G ) , if and only if there exist a n > 0 and b n such that n → + ∞ F n ( a n x + b n ) = G ( x ) . lim (1) F is in the domain of attraction of a max-semistable d.f. G , F ∈ MSS ( G ) , if and only if there exist a n > 0 and b n such that n → + ∞ F k n ( a n x + b n ) = G ( x ) , ∀ x ∈ C G lim (2) where k n verifies n → + ∞ k n +1 /k n = r ≥ 1 ( r < ∞ ) . lim (3) Remark: Max-stable laws are a particular case of the max-semistable laws when r = 1 . Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 2 / 30

  3. Introduction (continuation) Pioneers in max-semistable laws: Grinevich (1992, 1993) Pancheva (1992) (Grinevich 1992) G is a max-semistable d.f. if and only if there exist r > 1 , a > 0 and b ∈ R such that G is solution of the functional equation G ( x ) = G r ( ax + b ) . (4) Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 3 / 30

  4. First characterization (Grinevich 1992) Unifying standard expressions for max-semistable d.f.’s For γ � = 0 � � − (1 + γx ) − 1 /γ ν (log(1 + γx )) G γ,ν ( x ) = exp , x ∈ R , 1 + γx > 0 a � = 1 and p = log a = γ log r For γ = 0 G 0 ,ν ( x ) = exp {− e − x ν ( x ) } , x ∈ R a = 1 and p = b = log r where ν is a positive, bounded and periodic function with period p . Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 4 / 30

  5. Some graphical features of max-semistable laws 1 1 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 6 7 8 9 10 11 0 5 10 15 20 25 30 Figure: D.f.’s G 0 . 5 ( x ) = exp( − x − 2 ) and G 0 . 5 ,ν ( x ) = exp( − x − 2 (8 + cos(4 π log x ))) 11 10 9 8 7 6 5 4 3 2 1 0 0 5 10 15 20 25 30 Figure: QQ-Plot of G 0 . 5 ,ν against G 0 . 5 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 5 / 30

  6. Second characterization (Canto e Castro et al. 2000) General to location and scale, for any d.f. G max-semistable we have: − log( − log G ( s m + a m x )) = m log r + y ( x ) , ∀ x ∈ [0 , 1] , m ∈ Z (5) where y : [0 , 1] → [0 , log r ] is non decreasing, right continuous and continuous at x = 1 s m = m if a = 1 s m = ( a m − 1) / ( a − 1) if a � = 1 and a > 0 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 6 / 30

  7. Graph of the function − log( − log( G )) log r y 0 0 1 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 7 / 30

  8. Graph of the function − log( − log( G )) 2log r log r y 0 0 1 1+a Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 7 / 30

  9. Graph of the function − log( − log( G )) 3log r 2log r log r y 0 1+a+a 2 0 1 1+a Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 7 / 30

  10. Graph of the function − log( − log( G )) 3log r 2log r log r y 0 −log r 1+a+a 2 −a −1 0 1 1+a Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 7 / 30

  11. Graph of the function − log( − log( G )) 4log r 3log r 2log r log r y 0 −log r −2log r 1+a+a 2 −a −2 −a −1 −a −1 1+a+a 2 +a 3 0 1 1+a Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 7 / 30

  12. Statistical inference in max-semistable models Temido (2000) proposed that, in the estimation of the parameters r , p and γ , appropriated functions of the following sequence of statistics should be used Z s ( m ) := X ( m/s 2 ) − X ( m/s ) X ( m/s ) − X ( m ) where X ( m ) := X N − [ m ]+1: N are order statistics of a sample of size N from the random variable X m := m N is an intermediate sequence (that is, m N is an integer sequence verifying m N → + ∞ and m N /N → 0 ) Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 8 / 30

  13. Behaviour of the sequence of statistics Z s 8 8 s = 1.9 ≠ r 0.5 = r s = e 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Figure: Sample trajectories of Z s ( m ) for s = 1 . 9 and s = e 0 . 5 ≈ 1 . 65 F ( x ) = 1 − x − 1 (14 + cos(4 π log x )) , r = e 0 . 5 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 9 / 30

  14. Behaviour of the sequence of statistics Z s (continuation) Dias and Canto e Castro (2004) proved that n → + ∞ a c if and only if s = r c , c ∈ N . P Z s ( m ) − → Furthermore, if s � = r c then Z s ( m ) as an oscillatory behaviour. Using these result we have that if s = r c , c ∈ N , then Z s 2 ( m ) P R s ( m ) := − → 1 , n → + ∞ ( Z s ( m )) 2 P → log a c = cp, � P s ( m ) := log ( Z s ( m )) − n → + ∞ , γ � = 0 P γ s ( m ) := log( Z s ( m )) − → γ, n → + ∞ � log s Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 10 / 30

  15. Behaviour of the sequence of statistics Z s (continuation) Dias and Canto e Castro (2004) proved that n → + ∞ a c if and only if s = r c , c ∈ N . P Z s ( m ) − → Furthermore, if s � = r c then Z s ( m ) as an oscillatory behaviour. Using these result we have that if s = r c , c ∈ N , then Z s 2 ( m ) P R s ( m ) := − → 1 , n → + ∞ ( Z s ( m )) 2 P → log a c = cp, � P s ( m ) := log ( Z s ( m )) − n → + ∞ , γ � = 0 P γ s ( m ) := log( Z s ( m )) − → γ, n → + ∞ � log s Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 10 / 30

  16. Proposed estimators for the parameters r , p and γ 35 2 s = 1.5 s = 1.5 s = 1.7 1.8 s = 1.7 30 s = 1.9 s = 1.9 1.6 25 1.4 1.2 20 1 15 0.8 0.6 10 0.4 5 0.2 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Figure: Left: Sample trajectories of R s ( m ) for s = 1 . 5 , s = 1 . 7 and s = 1 . 9 Right: Magnified version r = e 0 . 5 ≈ 1 . 65 F ( x ) = 1 − x − 1 (14 + cos(4 π log x )) , Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 11 / 30

  17. Proposed estimators for the parameters r , p and γ 35 2 s = 1.5 s = 1.5 s = 1.7 1.8 s = 1.7 30 s = 1.9 s = 1.9 1.6 25 1.4 1.2 20 1 15 0.8 0.6 10 0.4 5 0.2 0 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Figure: Left: Sample trajectories of R s ( m ) for s = 1 . 5 , s = 1 . 7 and s = 1 . 9 Right: Magnified version r = e 0 . 5 ≈ 1 . 65 F ( x ) = 1 − x − 1 (14 + cos(4 π log x )) , Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 11 / 30

  18. Proposed estimators for the parameters r , p and γ (continuation) An estimate of r � � � r = mode arg max B s ( ǫ ) , ǫ = 0 . 01 , (0 . 01) , 0 . 1 s =1 . 1 , (0 . 1) , 3 . 0 where P k ◮ B s ( ǫ ) := 1 I { m ( i ) ∈ A n : | R s ( m ( i ) ) − 1 | <ǫ } ( m ( i ) ) (percentage of time that the 1 k i =1 sequence of statistics R s spends in a ǫ -neighborhood of 1) A n = { m (1) , m (2) , ..., m ( k ) } ◮ A n is a set of suitable values of m ◮ k = # A n Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 12 / 30

  19. Proposed estimators for the parameters r , p and γ (continuation) An estimate of p ◮ if γ � = 0 X X p = 1 r ( m ) = 1 b b P b log( Z b r ( m )) k k m ∈ A n m ∈ A n ◮ if γ = 0 b p = log b r An estimate of γ γ = � p/ log � r ( γ � = 0) � Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 13 / 30

  20. Simulation study Selected d.f.’s 1 − F ( x ) = (1 − F 0 ( x )) θ ( x ) where F 0 ∈ MS ( G ) for some max-stable d.f. G . In particular ◮ Generalized Pareto d.f. ( 1 − (1 + γx ) − 1 /γ x ∈ R , 1 + γx > 0 and γ � = 0 F 0 ( x ) = 1 − e − x x ∈ R and γ = 0 ◮ Burr d.f. F 0 ( x ) = 1 − (1 + x − ρ/γ ) − 1 /ρ , x ≥ 0 , ρ < 0 and γ > 0 θ positive and periodic function Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 14 / 30

  21. Simulation study (continuation) 70 70 N = 1000 N = 5000 N = 2000 N = 10000 60 60 50 50 40 40 30 30 20 20 10 10 0 0 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Figure: Empirical distribution of the estimates of r F ( x ) = 1 − x − 2 (8 + cos(4 π log x )) , r = e ≈ 2 . 71 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 15 / 30

  22. Simulation study (continuation) 90 90 N = 1000 N = 5000 N = 2000 N = 10000 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Figure: Empirical distribution of the estimates of r F ( x ) = 1 − x − 1 (27 + cos(8 π log x )) , r = e 0 . 25 ≈ 1 . 28 , r 2 ≈ 1 . 65 , r 3 ≈ 2 . 12 and r 4 ≈ 2 . 72 Canto e Castro, Dias Quantile Estimation in MSS EVA 2005 16 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend