equations of motion of compact binaries at the fourth
play

EQUATIONS OF MOTION OF COMPACT BINARIES at THE FOURTH - PowerPoint PPT Presentation

Hot Topics in General Relativity and Gravitation EQUATIONS OF MOTION OF COMPACT BINARIES at THE FOURTH POST-NEWTONIAN ORDER Luc Blanchet Gravitation et Cosmologie ( G R C O ) Institut dAstrophysique de Paris 31 juillet 2017 Luc Blanchet


  1. Hot Topics in General Relativity and Gravitation EQUATIONS OF MOTION OF COMPACT BINARIES at THE FOURTH POST-NEWTONIAN ORDER Luc Blanchet Gravitation et Cosmologie ( G R ε C O ) Institut d’Astrophysique de Paris 31 juillet 2017 Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 1 / 20

  2. Summary of known PN orders Method Equations of motion Energy flux Waveform 3.5PN non-spin 1 Multipolar-post-Minkowskian & post-Newtonian 4PN non-spin 3.5PN non-spin (MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO 3PN (NL) SS 3PN (NL) SS 2PN (L) SS 3.5PN (NL) SSS 3.5PN (NL) SSS Canonical ADM Hamiltonian 4PN non-spin 3.5PN (NNL) SO 4PN (NNL) SS 3.5PN (NL) SSS Effective Field Theory (EFT) 3PN non-spin 2PN non-spin 2.5PN (NL) SO 4PN (NNL) SS 3PN (NL) SS Direct Integration of Relaxed Equations (DIRE) 2.5PN non-spin 2PN non-spin 2PN non-spin 1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO 2PN (L) SS 2PN (L) SS 2PN (L) SS Surface Integral 3PN non-spin Many works devoted to spins: Spin effects (SO, SS, SSS) are known in EOM up to 4PN order SO effects are known in radiation field up to 4PN SS in radiation field known to 3PN 1 The 4.5PN coefficient is also known Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 2 / 20

  3. Summary of known PN orders Method Equations of motion Energy flux Waveform 3.5PN non-spin 1 Multipolar-post-Minkowskian & post-Newtonian 4PN non-spin 3.5PN non-spin (MPM-PN) 3.5PN (NNL) SO 4PN (NNL) SO 1.5PN (L) SO 3PN (NL) SS 3PN (NL) SS 2PN (L) SS 3.5PN (NL) SSS 3.5PN (NL) SSS Canonical ADM Hamiltonian 4PN non-spin 3.5PN (NNL) SO 4PN (NNL) SS 3.5PN (NL) SSS Effective Field Theory (EFT) 3PN non-spin 2PN non-spin 2.5PN (NL) SO 4PN (NNL) SS 3PN (NL) SS Direct Integration of Relaxed Equations (DIRE) 2.5PN non-spin 2PN non-spin 2PN non-spin 1.5PN (L) SO 1.5PN (L) SO 1.5PN (L) SO 2PN (L) SS 2PN (L) SS 2PN (L) SS Surface Integral 3PN non-spin Many works devoted to spins: Spin effects (SO, SS, SSS) are known in EOM up to 4PN order SO effects are known in radiation field up to 4PN SS in radiation field known to 3PN 1 The 4.5PN coefficient is also known Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 2 / 20

  4. The 4PN equations of motion THE 4PN EQUATIONS OF MOTION Based on collaborations with Laura Bernard , Alejandro Boh´ e , Guillaume Faye & Sylvain Marsat [PRD 93 , 084037 (2016); PRD 95 , 044026 (2017); PRD submitted (2017)] Tanguy Marchand , Laura Bernard & Guillaume Faye [PRL submitted (2017)] Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 3 / 20

  5. The 4PN equations of motion The 1PN equations of motion [Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938] � � � d 2 r A Gm B Gm C Gm D 1 − r AB · r BD � � � = − 1 − 4 − n AB r 2 r 2 d t 2 c 2 r AC c 2 r BD AB BD B � = A C � = A D � = B � �� + 1 B − 4 v A · v B − 3 v 2 A + 2 v 2 2( v B · n AB ) 2 c 2 G 2 m B m D Gm B v AB [ n AB · (3 v B − 4 v A )] − 7 � � � + n BD c 2 r 2 c 2 r AB r 3 2 AB BD B � = A B � = A D � = B Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 4 / 20

  6. The 4PN equations of motion 4PN: state-of-the-art on equations of motion d v i d t = − Gm 2 1 n i 12 r 2 12 1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term � �� � �� 5 G 2 m 1 m 2 � � + 4 G 2 m 2 1 2 n i + + · · · 12 + · · · c 2 r 3 r 3 12 12 � 1 � + 1 + 1 + 1 + 1 1 c 4 [ · · · ] c 5 [ · · · ] c 6 [ · · · ] c 7 [ · · · ] + c 8 [ · · · ] + O c 9 � �� � � �� � � �� � � �� � � �� � 2PN 2.5PN 3PN 3.5PN 4PN radiation reaction radiation reaction conservative & radiation tail  [Otha, Okamura, Kimura & Hiida 1973, 1974; Damour & Sch¨ afer 1985] ADM Hamiltonian     [Damour & Deruelle 1981; Damour 1983] Harmonic coordinates  2 PN [Kopeikin 1985; Grishchuk & Kopeikin 1986] Extended fluid balls   [Blanchet, Faye & Ponsot 1998] Direct PN iteration    [Itoh, Futamase & Asada 2001] Surface integral method Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 5 / 20

  7. The 4PN equations of motion 4PN: state-of-the-art on equations of motion d v i d t = − Gm 2 1 n i 12 r 2 12 1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term � �� � �� 5 G 2 m 1 m 2 � � + 4 G 2 m 2 1 2 n i + + · · · 12 + · · · c 2 r 3 r 3 12 12 � 1 � + 1 + 1 + 1 + 1 1 c 4 [ · · · ] c 5 [ · · · ] c 6 [ · · · ] c 7 [ · · · ] + c 8 [ · · · ] + O c 9 � �� � � �� � � �� � � �� � � �� � 2PN 2.5PN 3PN 3.5PN 4PN radiation reaction radiation reaction conservative & radiation tail  [Jaranowski & Sch¨ afer 1999; Damour, Jaranowski & Sch¨ afer 2001ab] ADM Hamiltonian    [Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002] Harmonic EOM 3 PN [Itoh & Futamase 2003; Itoh 2004] Surface integral method    [Foffa & Sturani 2011] Effective field theory  [Jaranowski & Sch¨ afer 2013; Damour, Jaranowski & Sch¨ afer 2014] ADM Hamiltonian  4 PN [Bernard, Blanchet, Boh´ e, Faye, Marchand & Marsat 2015, 2016, 2017ab] Fokker Lagrangian  [Foffa & Sturani 2012, 2013] (partial results) Effective field theory Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 5 / 20

  8. The 4PN equations of motion Fokker action of N particles [Fokker 1929] Gauge-fixed Einstein-Hilbert action for N point particles 1 � c 3 d 4 x √− g � R − 1 � 2 g µν Γ µ Γ ν S g.f. = 16 πG � �� � Gauge-fixing term � � � m A c 2 − ( g µν ) A v µ A v ν A /c 2 − d t A � �� � N point particles Fokker action is obtained by inserting an explicit PN solution of the Einstein 2 field equations g µν ( x , t ) − → g µν ( x ; y B ( t ) , v B ( t ) , · · · ) The PN equations of motion of the N particles (self-gravitating system) are 3 � ∂L F � δS F ≡ ∂L F − d + · · · = 0 δ y A ∂ y A d t ∂ v A Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 6 / 20

  9. The 4PN equations of motion Problem of point particles and UV divergences x + Gm 1 Gm 2 m 1 m 2 U ( x , t ) = | x − y 1 ( t ) | + | x − y 2 ( t ) | y 1 y (t) (t) 2 d 2 y 1 y 1 − y 2 ? d t 2 = ( ∇ U ) ( y 1 ( t ) , t ) = − Gm 2 | y 1 − y 2 | 3 For extended bodies the self-acceleration of the body cancels out by Newton’s action-reaction law For point particles one needs a self-field regularization to remove the infinite self-field of the particle Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 7 / 20

  10. The 4PN equations of motion Dimensional regularization for UV divergences [t’Hooft & Veltman 1972; Bollini & Giambiagi 1972; Breitenlohner & Maison 1977] Einstein’s field equations are solved in d spatial dimensions (with d ∈ C ) with 1 distributional sources. In Newtonian approximation ∆ U = − 4 π 2( d − 2) d − 1 Gρ For two point-particles ρ = m 1 δ ( d ) ( x − y 1 ) + m 2 δ ( d ) ( x − y 2 ) we get 2 � d − 2 � � � k = Γ U ( x , t ) = 2( d − 2) k Gm 1 Gm 2 2 | x − y 1 | d − 2 + with d − 1 | x − y 2 | d − 2 d − 2 π 2 Computations are performed when ℜ ( d ) is a large negative number, and the 3 result is analytically continued for any d ∈ C except for isolated poles Dimensional regularization is then followed by a renormalization of the 4 worldline of the particles so as to absorb the poles ∝ ( d − 3) − 1 Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 8 / 20

  11. The 4PN equations of motion Fokker action in the PN approximation We face the problem of the near-zone limitation of the PN expansion Lemma 1: The Fokker action can be split into a PN (near-zone) term plus a contribution involving the multipole (far-zone) expansion � r � r � � � B � B S g d 4 x d 4 x F = FP L g + FP M ( L g ) r 0 r 0 B =0 B =0 Lemma 2: The multipole contribution is zero for any “instantaneous” term thus only “hereditary” terms contribute to this term and they appear at least at 5.5PN order � r � � B S g d 4 x F = FP L g r 0 B =0 The constant r 0 will play the role of an IR cut-off scale IR divergences appear at the 4PN order Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 9 / 20

  12. The 4PN equations of motion Gravitational wave tail effect at the 4PN order [Blanchet & Damour 1988; Blanchet 1993, 1996] field point At the 4PN order there is an imprint of gravitational wave tails in the local 1.5PN (near-zone) dynamics of the source This leads to a non-local-in-time contribution in the Fokker action 4PN This corresponds to a 1.5PN modification of the radiation field beyond the quadrupole approximation (already tested by LIGO) matter source �� = G 2 M d t d t ′ | t − t ′ | I (3) ij ( t ) I (3) S tail ij ( t ′ ) 5 c 8 Pf F s 0 where the Hadamard partie finie (Pf) is parametrized by an arbitrary constant s 0 Luc Blanchet ( G R ε C O ) 4PN equations of motion HTGRG 10 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend