hamiltonian jacobi methods sweeping away convergence
play

Hamiltonian Jacobi methods: sweeping away convergence problems - PowerPoint PPT Presentation

Hamiltonian Jacobi methods: sweeping away convergence problems Christian Mehl School of Mathematics University of Birmingham United Kingdom GAMM Workshop Applied and Numerical Linear Algebra TU Hamburg-Harburg, September 11-12, 2008 Jacobi


  1. Hamiltonian Jacobi methods: sweeping away convergence problems Christian Mehl School of Mathematics University of Birmingham United Kingdom GAMM Workshop Applied and Numerical Linear Algebra TU Hamburg-Harburg, September 11-12, 2008

  2. Jacobi algorithms   ∗ · · · · · · ∗ · · · ·     · · ∗ · · ·     · · · ∗ · ·     · ∗ · · ∗ ·   · · · · · ∗ Jacobi’s algorithm for symmetric matrices: • select a pivot element in the lower triangular part;

  3. Jacobi algorithms   ∗ · · · · · · ∗ · · ◦ ·     · · ∗ · · ·     · · · ∗ · ·     · ◦ · · ∗ ·   · · · · · ∗ Jacobi’s algorithm for symmetric matrices: • select a pivot element in the lower triangular part; • diagonalize a corresponding 2 × 2 -problem with a Jacobi-rotation;

  4. Jacobi algorithms   ∗ · · · · · · ∗ · · · ·     · · ∗ · · ·     · · · ∗ · ·     · · · · ∗ ·   · · · · · ∗ Jacobi’s algorithm for symmetric matrices: • select a pivot element in the lower triangular part; • diagonalize a corresponding 2 × 2 -problem with a Jacobi-rotation; • cyclic version: do repeatedly n ( n − 1) steps, where each off-diagonal ele- 2 ment is annihilated at least once (sweep)

  5. Jacobi algorithms   ∗ · · · · · · ∗ · · · ·     �� �� · · ∗ · · ·   | a ij | 2 | a ij | 2 off ( A ) := off ( A ) :=   · · · ∗ · ·   i � = j i � = j   · · · · ∗ ·   · · · · · ∗ Jacobi’s algorithm for symmetric matrices / properties : • off ( A ) decreases monotonically; • globally convergent (...); • asymptotically quadratically convergent (...)

  6. Nonsymmetric Jacobi algorithms There are Jacobi-like algorithms for other types of eigenvalue problems: • computing the Schur form for complex matrices (Greenstadt, 1955, Eber- lein, 1962/87, Stewart 1985) • diagonalization of normal matrices (Goldstein, Hurwitz, 1959) • Hamiltonian matrices (Byers, 1986, Bunse-Gerstner Faßbender, 1997) • Generalized Schur form of regular pencils (Charlier, Van Dooren, 1989) • doubly structured matrices (Faßbender, Mackey, Mackey, 2001) • ... many more ... Drmaˇ c, Hari, Veseli´ c, ....

  7. Nonsymmetric Jacobi algorithms   ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗     · · ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗     · ∗ · · ∗ ∗   · · · · · ∗ Nonsymmetric Jacobi algorithm for general complex matrices: • select a pivot element in the lower triangular part;

  8. Nonsymmetric Jacobi algorithms   ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗     · · ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗     · ◦ · · ∗ ∗   · · · · · ∗ Nonsymmetric Jacobi algorithm for general matrices: • select a pivot element in the lower triangular part; • triangularize a corresponding 2 × 2 -problem with a Jacobi-rotation;

  9. Nonsymmetric Jacobi algorithms   ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗     · · ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗     · · · · ∗ ∗   · · · · · ∗ Nonsymmetric Jacobi algorithm for general matrices: • select a pivot element in the lower triangular part; • triangularize a corresponding 2 × 2 -problem with a Jacobi-rotation; • use a cyclic version: do repeatedly n ( n − 1) steps, where each element in 2 the lower triangular part is annihilated at least once (sweep)

  10. Nonsymmetric Jacobi algorithm: properties   ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗     �� �� · · ∗ ∗ ∗ ∗   | a ij | 2 | a ij | 2 off ( A ) := off ( A ) :=   · · · ∗ ∗ ∗   i>j i>j   · · · · ∗ ∗   · · · · · ∗ Nonsymmetric Jacobi algorithm for general matrices / properties : • off ( A ) does NOT decrease monotonically; • global convergence in experiments (...) – proof? ; • asymptotical quadratic convergence in experiments (...) – but... ;

  11. Hamiltonian Jacobi algorithms Reminder : the Hamiltonian eigenvalue problem A matrix H ∈ R 2 n × 2 n is called Hamiltonian if � � 0 I n H T J + JH = 0 , where J = − I n 0 or, equivalently, if � A � C H = , D − A T where A, C, D are n × n and C = C T and D = D T . For Jacobi, consider the corresponding complex eigenvalue problem and re- place ( · ) T with ( · ) ∗ .

  12. Hamiltonian Jacobi algorithms Reminder : the Hamiltonian eigenvalue problem A matrix S ∈ R 2 n × 2 n is called symplectic if � � 0 I n S T JS = J, where J = . − I n 0 Similarity transformation with symplectic matrices preserve the Hamiltonian structure. In the complex case replace ( · ) T with ( · ) ∗ .

  13. Hamiltonian Jacobi algorithms Reminder : the Hamiltonian eigenvalue problem Hamiltonian Schur form : � R � C H = , 0 − R ∗ where C = C ∗ and R is upper triangular. If H ∈ C 2 n × 2 n is Hamiltonian, then there exists a unitary symplectic matrix U ∈ C 2 n × 2 n such that U ∗ HU is in Hamiltonian Schur form if H has no eigenvalues on the imaginary axis.

  14. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : consider 4 × 4 subproblems instead of 2 × 2 subproblems;   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗     · • ∗ ∗ ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗ ∗ ∗     · · · · ∗ · · ·     · · · · ∗ ∗ · ·     · · · · ∗ ∗ ∗ ·   · · · · ∗ ∗ ∗ ∗ If a pivot element is selected...

  15. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : consider 4 × 4 subproblems instead of 2 × 2 subproblems;   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · • • ∗ ∗ ∗ ∗ ∗     · • • ∗ ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗ ∗ ∗     · · · · ∗ · · ·     · · · · ∗ ∗ · ·     · · · · ∗ ∗ ∗ ·   · · · · ∗ ∗ ∗ ∗ ... then the corresponding 2 × 2 subproblem is NOT Hamiltonian if the pivot element is off-diagonal.

  16. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : consider 4 × 4 subproblems instead of 2 × 2 subproblems;   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · • • ∗ ∗ • • ∗     · • • ∗ ∗ • • ∗     · · · ∗ ∗ ∗ ∗ ∗     · · · · ∗ · · ·     · • • · ∗ • • ·     · • • · ∗ • • ·   · · · · ∗ ∗ ∗ ∗ The corresponding 4 × 4 subproblem is the smallest Hamiltonian sub- problem containing the off-diagonal pivot element .

  17. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : consider 4 × 4 subproblems instead of 2 × 2 subproblems;   ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ · • • ∗ ∗ • • ∗     · ◦ • ∗ ∗ • • ∗     · · · ∗ ∗ ∗ ∗ ∗     · · · · ∗ · · ·     · ◦ ◦ · ∗ • ◦ ·     · ◦ ◦ · ∗ • • ·   · · · · ∗ ∗ ∗ ∗ Compute the Hamiltonian Schur form of the 4 × 4 subproblem and trans- form the matrix accordingly. ❀ The pivot element is annihilated.

  18. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : sweep: annihilate each pivot element at least once;   • • ∗ ∗ • • ∗ ∗ ◦ • ∗ ∗ • • ∗ ∗     · · ∗ ∗ ∗ ∗ ∗ ∗     · · · ∗ ∗ ∗ ∗ ∗     ◦ ◦ · · • ◦ · ·     ◦ ◦ · · • • · ·     · · · · ∗ ∗ ∗ ·   · · · · ∗ ∗ ∗ ∗ typical row-by-column sweep

  19. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : sweep: annihilate each pivot element at least once;   • ∗ • ∗ • ∗ • ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗     ◦ ∗ • ∗ • ∗ • ∗     · · · ∗ ∗ ∗ ∗ ∗     ◦ · ◦ · • · ◦ ·     · · · · ∗ ∗ · ·     ◦ · ◦ · • · • ·   · · · · ∗ ∗ ∗ ∗ typical row-by-column sweep

  20. Hamiltonian Jacobi algorithms Hamiltonian Jacobi algorithm : sweep: annihilate each pivot element at least once;   • ∗ ∗ • • ∗ ∗ • · ∗ ∗ ∗ ∗ ∗ ∗ ∗     · · ∗ ∗ ∗ ∗ ∗ ∗     ◦ · · • • ∗ ∗ •     ◦ · · ◦ • · · ◦     · · · · ∗ ∗ · ·     · · · · ∗ ∗ ∗ ·   ◦ · · ◦ • · · • typical row-by-column sweep

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend