landau zener transitions with quantum noise
play

Landau-Zener Transitions with quantum noise Valery Pokrovsky - PowerPoint PPT Presentation

Landau-Zener Transitions with quantum noise Valery Pokrovsky Department of Physics, Texas A&M University and . . . Nikolai A. Sinitsyn Department of Physics


  1. Landau-Zener Transitions with quantum noise Valery Pokrovsky Department of Physics, Texas A&M University and Институт теоретической физики им . Л . Д . Ландау Nikolai A. Sinitsyn Department of Physics and Astronomy UT Austin Participants : Stefan Scheidl Institut für Theoretishe Physik, Universität zu Köln Bogdan Dobrescu Texas A&M Univesity August 2006 Dresden, 2006

  2. Outline • Introduction and motivation • Landau-Zener problem for 2-level crossing • Fast classical noise in 2-level systems • Noise and regular transitions work together • Quantum noise and its characterization • Transitions due to quantum noise in the LZ system • Production of molecules from atomic Fermi-gas at Feshbach resonance • Conclusions August 2006 Dresden, 2006

  3. I ntroduction LZ theory energy Adiabatic levels 2 1 Diabatic levels time 1 2 Avoided level crossing (Wigner-Neumann theorem) Schrödinger equations − = Ω = = + ∆ h ( ) ( ) ( ); 1 E t E t t & ( ) ia E t a a 2 1 1 1 1 2 & Ω = Ω = ∆ + * & ( ) ia a E t a ( ) t t 2 1 2 2 August 2006 Dresden, 2006

  4. Adiabatic levels: 2 + − ⎛ ⎞ E E E E = ± + ∆ 2 1 2 1 2 ⎜ ⎟ E ± ⎝ ⎠ 2 2 & =− =Ω /2 Center-of mass energy = 0 E E t 2 1 ∆ & µ γ = g B LZ parameter: & Ω = B z & Ω h h γ ฀ 1 γ ฀ 1 August 2006 Dresden, 2006

  5. α β ⎛ ⎞ = ⎜ α + β = ⎟ 2 2 U LZ transition matrix | | | | 1 − β α * * ⎝ ⎠ e πγ − α = 2 Amplitude to stay at the same d-level ⎛ ⎞ π γ π 2 π − + 2 e x p ⎜ ⎟ i ⎝ 2 4 ⎠ β = − Amplitude of transition γ Γ − γ 2 ( ) i ∆ ∆ ⎛ ⎞ 2 τ = Ω 1 & τ = Ω − 1 / 2 LZ transition time: m a x ⎜ , ⎟ & Ω & L Z ⎝ ⎠ L Z τ LZ & && τ τ = Ω Ω ฀ / Condition of validity: 1 2 LZ sat August 2006 Dresden, 2006

  6. Nanomagnets: Brief description August 2006 Dresden, 2006

  7. Spin reversal in nanomagnets W. Wernsdorfer and R. Sessoli, Science 284 , 133 (1999) August 2006 Dresden, 2006

  8. Controllable switch between states for quantum computing: The noise introduces mistakes to the switch work. Transverse noise Longitudinal noise creates decoherence August 2006 Dresden, 2006

  9. Landau-Zener tunneling in noisy environment V. Pokrovsky and N. Sinitsyn, Phys. Rev. B 67, 144303, 2003 Classical fast noise in 2-level system & = + = Ω + ∆ b b η b ˆ ˆ ; z t x tot reg reg ⎛ ⎞ ′ − η ( ) t t t ′ η η = -- Gaussian noise ⎜ ⎟ ( ) ( ) t t f τ i k ik ⎝ ⎠ n & − τ Ω 1/2 ฀ Noise is fast if n I ω ∆ ω = τ 1/ August 2006 Dresden, 2006 n

  10. 1 ρ = + ⋅ g s Density matrix: ˆ( ) ( ) t I t 2 t − g ( ) Bloch vector . It obeys Bloch equation: = − × g b g & tot 1 1 ( ) ( ) = − ≡ − g n n n n Difference of populations ↑ ↓ 1 2 z 2 2 ± = ± g g ig Coherence amplitude x y = g 2 const Integral of motion: August 2006 Dresden, 2006

  11. Transitions produced by noise & Ω = Ω ( ) t t t τ acc & Ω = Ω ≤ τ ( ) 1/ t t It produces transitions until n 1 τ = Ω τ ฀ Accumulation time: & τ acc n n ( ) g t is slowly varying z August 2006 Dresden, 2006

  12. Transition is produced by a spectral component of noise whose frequency equal to its instantaneous value in the LZ 2-level system. = − η η * & n n Ω Ω Ω 1 ( ) ( ) 1 t t t Transition probability measures the spectrum of noise ⎛ ⎞ π η 2 2 | | ⎜ ⎟ = − Transition probability for infinite time exp P → ⎜ ⎟ & Ω 1 1 2 h ⎝ ⎠ Fermi golden rule is exact for gaussian fast noise! August 2006 Dresden, 2006

  13. Regular and random field act together Separation of times : noise τ is essential only beyond LZ τ acc τ LZ τ acc ⎡ ⎤ π η 2 ⎛ ⎞ 2 | | π ∆ 2 2 − − 1 1 ⎢ ⎥ = − ⎜ − ⎟ & & Ω Ω 2 2 h h 2 1 P e e ⎜ ⎟ → ⎢ ⎥ 1 2 2 ⎝ ⎠ ⎣ ⎦ August 2006 Dresden, 2006

  14. π η 2 2 | | J= ω & & β = Ω Plot of transition probability vs. inverse frequency rate. It is possible to get P larger than ½ at faster sweep rate or stopping the process at some specific field. August 2006 Dresden, 2006

  15. Graph representation τ ฀ n 1 t ′ 2 1 1 2 1 t ′ t ′ t ′ t t t t 1 1 2 2 3 3 ( ) ⎛ ⎞ & ′ Ω − 2 2 i t t G t t ′ t ′ 1 t ′ 2 ′ ⎜ ⎟ = * ( , ) ( , ) exp t t G t t ⎜ ⎟ 2 ⎝ ⎠ t ′ ′ ′ η η = η η † † ( ) ( ) ( ) ( ) t t t t t Chronological time order τ ฀ n t ′ t ′ t t 1 2 1 2 4 times are close August 2006 Dresden, 2006

  16. ⎡ ⎤ t ∫ ′′ ′′ = − η What was omitted: Debye-Waller factor ⎢ ⎥ exp ( ) W i t dt z ⎣ ⎦ ′ t ′ η τ ฀ W ≈ − τ 2 2 1 ฀ 1, t t if z n n Diagonal noise leads to decoherence for a long time g ± +∞ = ( ) 0 1 τ = τ ฀ Decoherence time: η τ dec n 2 z n August 2006 Dresden, 2006

  17. Quantum noise and its characterization η η ≠ η η † † ( ) ( ') ( ') ( ) t t t t Model of noise: phonons ( ) = + † † 1 ; H u a a a a int 1 2 2 1 ∑ = η + η η = † ; u g b k k V k = ∑ ω † H b b k k k n k Ω ( ) ( ) t & = − Ω = Ω † † ; ( ) H a a a a t t 2 1 1 2 2 2 August 2006 Dresden, 2006

  18. ( ) − ( ) 2 ∫ 1 e ω η η = δ ω − ω = − † k / T ; 1 N d g N ω ω ω ω k k ( ) ( ) 2 ∫ η η = + δ ω − ω = e ω η η † k / † T 1 N d g ω ω ω ω ω k k ω = ∫ d ′ − ω − η η η η † † ( ) i t t ( ) ( ') t t e ω ω π 2 Different time scales for induced and spontaneous transitions τ − τ ω − 1 1 ฀ ฀ T ni ns D & T ω Ω ฀ , Noise is fast if D August 2006 Dresden, 2006

  19. Bloch equation for the fast quantum noise ( ) ds ⎡ ⎤ = η η − η η + η η † † † z sign( ) , t s ⎣ ⎦ Ω Ω Ω Ω Ω Ω z dt & Ω = Ω = Ω ( ) t t Solution ⎛ ⎞ ( ) t ∫ ′ = ⎜ − η η + η η ⎟ + † † ( ) ( )exp , s t s t dt ⎜ ⎟ ′ ′ ′ ′ Ω Ω Ω Ω 0 z z ( ) ( ) ( ) ( ) t t t t ⎝ ⎠ t 0 ( ) ⎛ ⎞ t t ⎡ ⎤ ∫ ∫ ′ ′ ′′ η η − η η + η η † † † ⎜ ⎟ sign( ) , exp dt t dt ⎣ ⎦ ′ ′ ′′ ′′ ′′ ′′ Ω Ω Ω Ω Ω Ω ( ) ( ) ( ) ( ) ( ) ( ) t t t t t t ⎝ ⎠ ′ t t 0 Sz turns into zero in the limit of strong noise, but not exponentially August 2006 Dresden, 2006

  20. Essential graphs τ ฀ n 1 t ′ 2 1 1 2 1 t ′ t ′ t ′ t t t t 1 1 2 2 3 3 Golden rule picture Ω t η η † Ω Ω 2 2 η η † Ω Ω 1 1 August 2006 Dresden, 2006

  21. Saturation of frequency Ω Ω ∞ t τ s ( ) − 1 τ = ωτ τ & ฀ acc n s ⎡ ⎤ η η † , ⎣ ⎦ Ω Ω = − ∞ ∞ s Long time limit ∞ z η η + η η † † Ω Ω Ω Ω ∞ ∞ ∞ ∞ Ω h η η = η η † † Noise in thermal equilibrium e T Ω Ω Ω Ω Ω h = ∞ tanh 2 s ∞ z T August 2006 Dresden, 2006

  22. Feshbach resonance 40 K 2 40 K August 2006 Dresden, 2006

  23. Feshbach resonance 6 Li 6 Li 2 August 2006 Dresden, 2006

  24. Feshbach Resonance driven by sweeping magnetic field B 6 Li 6 Li 2 hf interaction 6 Li = + H H V Hamiltonian: 0 ( ) ( ) ( ) ∑ ∑ ⎡ ⎤ = ε − µ − + + − µ † † † ( ) 2 H h t a a b b E c c ⎣ ⎦ p p p p p q q q 0 p q = & ( ) h t ht ( ) g ∑ = + † . . ; V a b c h c ε 3 ฀ g a + p q p q hf m V p q , August 2006 Dresden, 2006

  25. Suggestions of LZ probability for the molecule production ( ) N t ε 2 2 = α γ g n mol ( , ) P t γ = 2 hf 3 ฀ na LZ & & (0) Ω Ω N m 2 2 h h a α = α = 1/ 2 ? - combinatorial factor. August 2006 Dresden, 2006

  26. Perturbation theory for molecular production B. Dobrescu and VP, Phys. Lett. A 350 , 154 (2006) Keldysh technique for time-dependent field + - Green functions ( ) ′ ′ = − p p p † A ( ; , ) ( , ) ( , ) t t i T a t a t αβ α β c ( ) ′ ′ = − p p † p B ( ; , ) ( , ) ( , ) t t i T b t b t αβ α β c α β = ± , ( ) ′ ′ = − p p p † C ( ; , ) ( , ) ( , ) t t i T c t c t αβ α β c Number of molecules ∑ = p C ( ) ( ; , ) N t i t t +,- m ∈ p (Fermi sphere) August 2006 Dresden, 2006

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend