composite heavy vector triples in the atlas di boson
play

Composite heavy vector triples in the ATLAS di-boson excess and at - PowerPoint PPT Presentation

Gearing up for LHC 13, GGI, 18 September 2015 Composite heavy vector triples in the ATLAS di-boson excess and at future colliders Andrea Thamm JGU Mainz in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701


  1. Gearing up for LHC 13, GGI, 18 September 2015 Composite heavy vector triples in the ATLAS di-boson excess and at future colliders Andrea Thamm 
 JGU Mainz in collaboration with R. Torre and A. Wulzer based on arXiv: 1506.08688 and 1502.01701

  2. Di-boson excess? W and Z tagged dijets W and Z semi-leptonic W and Z tagged dijets CMS, arXiv:1405.1994 CMS, arXiv:1405.3447 ATLAS, arXiv:1506.00962 HV W and Z semi-leptonic W and Z tagged dijets CMS, arXiv:1405.3447 ATLAS, arXiv:1506.00962 CMS, arXiv:1506.01443

  3. Di-boson excess? 3 . 4 σ local significance 2 . 5 σ global significance [ATLAS, arXiv:1506.00962]

  4. Tagging efficiencies • W-fat jet: 69.4 GeV < m < 95.4 GeV • Z-fat jet: 79.8 GeV < m < 105.8 GeV [Allanach, Gripaios, Sutherland: arXiv:1507.01638] [ATLAS, arXiv:1506.00962] • efficiency of jet invariant mass cuts

  5. Excess events n obs = 15 n obs = 20 n exp = 13 . 0 n exp = 10 . 8 n exc = 7 . 0 n exc = 4 . 2 [ATLAS, arXiv:1506.00962] S W Z = 7 . 0 +3 . 8 − 2 . 6 Big statistical uncertainties: S W W = 4 . 2 +3 . 2 − 2 . 0 S ZZ = 6 . 4 +3 . 6 − 2 . 4 combined fit only by ATLAS 
 n obs = 10 lack information on the correlation of the big systematic n exp = 3 . 6 uncertainties n exc = 6 . 4 We extract the signal CS from a single channel and compare with the others

  6. Signal cross section BR W Z → had ≈ 0 . 47 n obs = 20 n exp = 13 . 0 n exc = 7 . 0 ( σ × BR) ATLAS 3 . 4 events = 3 . 17 fb BR W Z → had S W Z = 7 . 0 +3 . 8 σ W 0 × BR W 0 → W Z = 6 . 5 +5 . 1 − 4 . 1 fb − 2 . 6

  7. Heavy vector triples

  8. Heavy vector triples • among the most well motivated particles • appear in composite Higgs models but also in weakly coupled theories • associated to the EW gauge symmetry • consider a 3 of SU (2) L

  9. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g ∼ g V c H × g c F g V V µ W µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  10. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Coupling to SM Vectors Coupling to SM fermions J µ a X f L γ µ τ a f L = F f W L , Z L , h f ∼ g 2 c F ∼ g V c H g V V µ V µ ¯ f W L , Z L , h c F V · J F c l V · J l + c q V · J q + c 3 V · J 3 →

  11. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν • Couplings among vectors • do not contribute to V decays • do not contribute to single production • only effects through (usually small) VW mixing • irrelevant for phenomenology only need ( c H , c F )

  12. Phenomenological Lagrangian ν ] D [ µ V ν ] a + m 2 − 1 4 D [ µ V a 2 V a µ V µ a � V + , V − , V 0 � V V = L V = H + g 2 µ µ H † ⌧ a ↔ µ J µ a + i g V c H V a c F V a D F g V + g V µ V µ a H † H − g ν D [ µ V ν ] c + g 2 2 c V V V ✏ abc V a µ V b V c V V HH V a 2 c V V W ✏ abc W µ ν a V b µ V c ν Weakly coupled model Strongly coupled model typical strength of V interactions g V g V ∼ g ∼ 1 1 < g V ≤ 4 π dimensionless coefficients c i c H ∼ − g 2 /g 2 c F ∼ 1 c H ∼ c F ∼ 1 and V

  13. Production rates • DY and VBF production � � 4 π 2 Γ V → ij dL ij 48 π 2 dL W L i W L j Γ V → W L i W L j � � X X σ DY = � σ V BF = � M V d ˆ s 3 � M V d ˆ s � � i,j ∈ p s = M 2 � ˆ i,j ∈ p s = M 2 ˆ V V model 
 model 
 dependent independent • can compute production rates analytically! • easily rescale to different points in parameter space quark initial state vector boson initial state 10 4 10 0 10 - 1 + Z L H V + L 10 3 W L u i d j H V + L - H V 0 L 10 - 2 u i u j H V 0 L W L + W L 10 2 10 - 3 W L - Z L H V - L d i d j H V 0 L 10 1 10 - 4 d i u j H V - L 10 0 10 - 5 ` @ pb D ` @ pb D 10 - 1 10 - 6 dL ê d s dL ê d s 10 - 7 10 - 2 10 - 8 10 - 3 10 - 9 10 - 4 8 TeV 8 TeV 10 - 10 10 - 5 10 - 11 10 - 6 ` L 2 L CTEQ6L1 H m 2 = s 10 - 12 CTEQ6L1 H m 2 = M W 10 - 13 10 - 7 0 1 2 3 4 5 0 1 2 3 4 5 ` = M V @ TeV D ` = M V @ TeV D s s

  14. Decay widths • relevant decay channels: di-lepton, di-quark, di-boson ◆ 2 M V ✓ g 2 c F 0 ' 2 Γ V 0 → ff ' N c [ f ] Γ V ± → ff 96 π , g V ' g 2 V c 2 H M V 1 + O ( ζ 2 ) ⇥ ⇤ Γ V 0 → W + Γ V ± → W ± ' L W − L Z L 192 π L ' g 2 V c 2 H M V ⇥ 1 + O ( ζ 2 ) ⇤ Γ V 0 → Z L h Γ V ± → W ± ' L h 192 π g 2 c F /g V ' g 2 /g V g V c H ' � g V , è W + W - ll Zh 10 - 1 nn BR H V 0 Æ 2 X L uu bb Model B è tt dd 10 - 2 10 - 3 g V = 3 500 1000 1500 2000 2500 3000 3500 4000 M 0 @ GeV D

  15. LHC bounds V 0 Æ tt V ± Æ tb V 0 Æ ll V ± Æ l ± n V ± Æ W ± Z Æ 3 l ± n V ± Æ W ± Z Æ jj _ ' V 0 Æ WW Æ jj V 0 Æ WW Æ l n q q 10 4 V 0 Æ tt pp Æ V 0 pp Æ V + 10 3 CMS theoretically excluded B g V = 3 10 2 s H pp Æ V L @ pb D 10 1 10 0 10 - 1 10 - 2 10 - 3 similar bounds for ATLAS 10 - 4 0 1000 2000 3000 4000 M V @ GeV D • excluded for masses < 1.5 TeV , unconstrained for larger g V • di-boson most stringent • in excluded region , not reproduced G F m Z

  16. Heavy vector triples in the di-boson excess

  17. LHC bounds • experimental limits converted into plane ( M V , g V ) yellow: CMS analysis l + ν dark blue: CMS WZ → 3 l ν [Pappadopulo, Thamm, Torre, Wulzer, arXiv:1402.4431] light blue: CMS 5 WZ → jj black: bounds from EWPT theoretically Model B excluded 4 New Physics? g V 3 2 1 500 1000 1500 2000 2500 3000 3500 M V @ GeV D • similar exclusions at low , leptonic final state dominates g V • very different for larger coupling • weaker limits if decay to top partners open [Greco, Liu: arXiv:1410.2883] [Chala, Juknevich, Perez, Santiago :arXiv:1411.1771]

  18. LHC bounds yellow: CMS analysis l + ν dark blue: CMS • compare with weakly coupled vectors WZ → 3 l ν light blue: CMS WZ → jj black: bounds from EWPT Weakly coupled model Strongly coupled model 5 5 theoretically Model A Model B excluded 4 4 g V 3 g V 3 2 2 1 1 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 M V @ GeV D M V @ GeV D • strongly coupled vectors have weaker bounds [Pappadopulo, Thamm, Torre, Wulzer, arXiv:1402.4431]

  19. HVT signal cross section • neutral and charged components contribute to the various selection regions S W Z = L × A × [( � × BR) V ± BR W Z → had ✏ W Z → W Z + ( � × BR) V 0 BR W W → had ✏ W W → W Z ] • Once we fix the mass there is only one parameter g V S W Z = 7 . 0 +3 . 8 − 2 . 6 [Thamm, Torre, Wulzer, arXiv:1506.08688] n obs = 20 n exp = 13 . 0 n exp = 7 . 0 S W W ∈ [2 . 2 , 10 . 3] S ZZ ∈ [1 . 4 , 6 . 6] S W W = 4 . 2 +3 . 2 S ZZ = 6 . 4 +3 . 6 − 2 . 0 − 2 . 4

  20. Compatibility with other searches b) a) c) σ × BR e ff ( WZ ) [pb] σ × BR e ff ( WZ ) [pb] σ × BR e ff ( ZZ ) [pb] σ x BR ( W' → WZ ) [ pb ] σ x BR ( W' → WZ ) [ pb ] σ x BR ( G → ZZ ) [ pb ] CMS leptonic Z → → → → → → σ σ σ σ σ σ CMS Fully hadronic ATLAS leptonic Z Resonance mass [ GeV ] Resonance mass [ TeV ] Resonance mass [ GeV ] e) f) d) σ × BR e ff ( WW ) [pb] σ × BR( V H ) [pb] σ × BR e ff ( WZ ) [pb] σ x BR ( Z' → WW ) [ pb ] σ x BR ( V' → HV ) [ pb ] σ x BR ( W' → WZ ) [ pb ] CMS leptonic W CMS HV combination → → → → → → → ATLAS leptonic W σ σ σ σ σ σ σ Resonance mass [ TeV ] Resonance mass [ GeV ] Resonance mass [ TeV ] Resonance mass [ GeV ] Thamm, Torre, Wulzer, arXiv:1506.08688

  21. Conclusion I • perfectly agrees with some channels • could maybe even explain some small excesses • maybe slight tension in other channels • maybe this is exactly what we expect?

  22. Heavy vector triples at future colliders

  23. Composite Higgs models at future colliders

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend