filters and noise
play

Filters and Noise Optional Assessment of Practical Importance Rubin - PowerPoint PPT Presentation

Filters and Noise Optional Assessment of Practical Importance Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from the National Science Foundation Course:


  1. Filters and Noise Optional Assessment of Practical Importance Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Problem: Cleaning Up Noisy a Signal 0 2 4 6 8 1 0 1 2 t (s) Problem: What is pure signal? Two Simple Approaches Autocorrelation functions 1 Digital Filters 2 Both wide applications More filters in Wavelet Analysis & Data Compression 2 / 1

  3. Noise Reduction via Autocorrelation (Theory) Assumption: Noise just adds to signal Measure = Signal + Noise y ( t ) = s ( t ) + n ( t ) 0 2 4 6 8 1 0 1 2 t (s) s ( t ) = ? Science: assume simplest (+) Science: noise ≃ random ( ∞ o F) Recall “random” sequence; r i r i + 1 � ⇒ n ( t ) not correlated with s ( t ) , n ( t ) 3 / 1

  4. Correlation Function c ( t ) How measure correlation? y ( t ) = sin ω, x ( t ) = sin ( n ω t + φ ) correlated � + ∞ dt y ∗ ( t ) x ( t + τ ) c ( τ ) = (Correlation Function) −∞ Correlated ( τ = lag time = variable): Integrand > 0 for some τ ⇒ Constructive interference ⇒ c ( τ ) → ∞ Not correlated: 2 functions oscillate independently +, - equally likely ⇒ Destructive interference ⇒ c ( τ ) ≃ 0 4 / 1

  5. More Correlation Function Properties Express c , y ∗ , x via FT & substitute: � + ∞ d ω ′ C ( ω ′ ) e i ω ′ τ c ( τ ) = √ (FT) (1) 2 π −∞ � + ∞ c ( τ ) def dt y ∗ ( t ) x ( t + τ ) (Def) = (2) −∞ √ 2 π Y ∗ ( ω ) X ( ω ) ⇒ C ( ω ) = (3) Requires convergence to rearrange Related to convolution theorem (soon) 5 / 1

  6. Special Correlation Function: Autocorrelation Measure Correlation with Itself: a ( τ ) � + ∞ a ( τ ) def dt y ∗ ( t ) y ( t + τ ) = −∞ To compute: fold or convolute with self: y ( t ) = measured signal Average over time for “all” τ values a ( 0 ) = “large” 6 / 1

  7. Averaging Removes Random Noise from a ( t ) Proof by substitution y ( t ) = s ( t ) + n ( t ) (Noisy Signal) (4) � + ∞ a y ( τ ) def dt y ∗ ( t ) y ( t + τ ) = (Def a ( t ) ) (5) −∞ � + ∞ = dt [ s ( t ) s ( t + τ ) + s ( t ) n ( t + τ ) + n ( t ) n ( t + τ )] −∞ � + ∞ ⇒ a y ( τ ) ≃ dt s ( t ) s ( t + τ ) = a s ( τ ) QED Magic (6) −∞ √ 2 π | S ( ω ) | 2 ∝ Power Spectrum So A s ( ω ) ≃ (7) 7 / 1

  8. 0.6 1.0 4 6 8 10 12 Function฀฀y(t)฀+฀Noise฀After฀Low฀pass฀Filter t฀(s) y tau฀(s) 0.4 D 0.8 1.2 0 1.4 x10 2 0 2 4 6 8 10 12 Autocorrelation฀Function฀A(tau) A C 2 10 A 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 x10 3 0 5 15 8 20 25 30 35 40 45 Power฀Spectrum฀(with฀Noise) Frequency P 0 2 4 6 B How Apply to Data? Start with Noisy signal In itia l F u n c tio n y (t) + N o ise 1 0 8 6 y 4 2 0 0 2 4 6 8 1 0 1 2 t (s) 2 DFT: a ( t ) ⇒ A ( ω ) Compute autocorrelation 1 3 ⇒ power spectrum w/o function random noise 8 / 1

  9. Autocorrelation Function Exercises ( Noise.java ) Example 1 − 0 . 9 sin t ≃ 1 + 0 . 9 sin t + ( 0 . 9 sin t ) 2 · · · 1 Signal: s ( t ) = 1 DFT ⇒ S ( ω ) , Plot | S ( ω ) | 2 . 2 Autocorrelation function a ( t ) of s ( t ) ? 3 Power spectrum a ( t ) vs | S ( ω ) | 2 ? 4 Add noise y ( t i ) = s ( t i ) + α ( 2 r i − 1 ) , 0 fuss ≤ α ≤ hide 5 Plot y ( t ) , Y ( ω ) , Power spectrum. 6 a ( t ) → A ( ω ) . 7 Compare A ( ω ) to power spectrum. 8 9 / 1

  10. Filtering with Transforms (Theory) Action of Filter � + ∞ g ( t ) = d τ f ( τ ) h ( t − τ ) (8) −∞ def = f ( t ) ∗ h ( t ) (9) (analog filter) h ( t ) def = unit impulse Greens function response h ( 0 ) = max, h ( < 0 ) = 0 � + ∞ h ( t ) = −∞ d τ δ ( τ ) h ( t − τ ) ∗ = Convolution 10 / 1

  11. Convolution Theorem Filter as Convolution � + ∞ g ( t ) = d τ f ( τ ) h ( t − τ ) (10) −∞ √ G ( ω ) = 2 π F ( ω ) H ( ω ) (11) � Proof: FT, δ , Lowpass: ↓ high ω Simpler in ω than t Highpass: ↓ low ω Digital: response ( ω n ) 11 / 1

  12. Digital Filters Filter Coefficients c n = Complete Description � + ∞ g ( t ) = d τ f ( τ ) h ( t − τ ) (12) Filter Def: −∞ N � h ( t ) = c n δ ( t − n τ ) (13) Digital Transfer: n = 0 N � ⇒ g ( t ) = c n f ( t − n τ ) (14) n = 0 c n : integration wts N point DFT + response 12 / 1

  13. 3 0.8 e 0.0 0.5 1.0 1.5 e 0.0 0.2 0.4 0.6 1.0 u 1.2 1.4 Windowed-sinc฀filter฀kernel Time฀ A m p l i t d t d 0.20 0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.05 0.10 0.15 0.25 i 0.30 0.35 0.40 0.45 0.50 Ideal฀frequency฀response Frequency A m p l u Exploration: Windowed Sinc Filters (Filter.java) ⊙ Lowpass Filter to Reduce Noise, Aliasing Ideal lowpass Y ( ω ) = rectangular pulse ⇒ y ( t ) = sinc function � t � + ∞ � sin ( π t / 2 ) def d ω e − i ω t rect ( ω ) = sinc = 2 π t / 2 −∞ ⇒ filter out high ω : convolute with sin ( ω c t ) / ( ω c t ) Exercise: Repeat random noise addition using sinc filter 13 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend