km3 neutrino detector workshop
play

Km3 neutrino detector workshop January 23 20.30-22.00 KM3 - PowerPoint PPT Presentation

1/60 Km3 neutrino detector workshop January 23 20.30-22.00 KM3 Cerenkov neutrino detector, the Cerenkov medium properties: ice, sea water, lake water. Their effect on Km3 neutrino detector workshop detector structure, effective area and


  1. 1/60 Km3 neutrino detector workshop January 23 20.30-22.00 KM3 Cerenkov neutrino detector, the Cerenkov medium properties: ice, sea water, lake water. Their effect on Km3 neutrino detector workshop detector structure, effective area and angular resolution. Pascal Vernin & Chantal Racca – properties of the ANTARES site Giorgio Riccobene – evaluation of optical and oceanological properties for a Km3 detector close to Capo Passero (Sicily) Zhan Arys Dzhilkibaev - properties of Lake Baikal water Christian Spiering – properties of South Pole ice around AMANDA January 24 17.00-19.30 KM3 neutrino detectors – Cerenkov, radio, acoustic detections; effective area, energy range, energy and angular resolution, discovery capabilities. Present status and future techniques Luciano Moscoso – Cerenkov detection Christian Spiering – acoustic and radio detection Gianni Pavan (Centro Interdisciplinare di Bioacustica, Univ. Di Pavia)– The km3 neutrino detector: an example of deep underwater multidisciplinary laboratory Sandra Zavatarelli (INFN, Genova, Italy) – Present and future photon detectors for km3 neutrino telescope. Riccardo Papaleo (Lab. Naz. Del Sud, INFN, Catania, Italy)– study for a Km3 Cerenkov detector in Capo Passero site: mechanics, deployment, data transmission January 30 17.00-19.00 Gert-Jan Nooren – electronic equipment required for a Km3 neutrino detector Vincent Bertin – slow control for a Km3 neutrino detector Domenico Lo Presti (University of Catania, Italy) - development of a new electronics for the km3 neutrino detector. Antonio Capone - February 1 st 2002 - Les Houches - Summary of “Km3 neutrino detector workshop”

  2. 2/60 ANTARES: site evaluation results (1) deep Sea Currents Fouling on optical P. Vernin modules

  3. 3/60 ANTARES: site evaluation results (2) P. Vernin

  4. 4/60 ANTARES: site evaluation results (3) Optical background by β - from 40 K decay and by bioluminescent organism (1) C. Racca

  5. 5/60 ANTARES: site evaluation results (4) Optical background by β - from 40 K decay and by bioluminescent organism (2) C. Racca

  6. 6/60 NEMO - Capo Passero site KM3 KM4 100 km KM2 • KM2 36°10’ N 16°19’E, depth 3350m (1: Jan ‘99) • KM3 36°30’ N 15°50’E, depth 3345m (1: Feb ‘99, 1: Aug’99, 2: Dec ‘99) • KM4 36°19’N, 16°04’E, depth 3341m (2: Dec ‘99, 2: March ’00, contiuing ) G. Riccobene

  7. 7/60 NEMO - Deep Sea Current Measurements (August 1998 - running) 10 cm/sec North Tidal Effect Filtered out Raw Data 10 cm/sec North Preliminary analysis Lat:36°30’N Long:15°50’E Depth: 3350m Average current intensity: 3.6 cm/sec current meter moored @ -3325m RMS: 2.5 cm/sec Average angle: 8° NW G. Riccobene

  8. 8/60 Sediment rate measurements Northern Ionian Flux (mg m -2 day -1 ) Sea(1997 data) July 1 st G. Riccobene days

  9. 9/60 NEMO site bioluminescent bacteria Bioluminescent bacteria on SWC G. Riccobene

  10. 10/60 NEMO- Seasonal dependences of L a and L c Attenuation length [m] G. Riccobene

  11. 11/60 NEMO-BAIKAL joint measurement Absorption and Scattering in Lake Baikal (1000 m) G. Riccobene

  12. 12/60 NEMO-BAIKAL joint measurement Attenuation in Lake Baikal (1000 m) G. Riccobene

  13. 13/60 Summary of L abs and L att meas. in NEMO & Baikal sites G. Riccobene

  14. 14/60 NEMO Measurement of scattering angle distribution in deep sea water: DEWAS Preliminary G. Riccobene

  15. 15/60 BAIKAL parameters BAIKAL parameters Z. Dzhilkibaev

  16. 16/60 AMANDA: effective scattering coefficient λ scatt eff 10m 20m C. Spiering

  17. 17/60 Amanda scattering & absorption 20m 50m 100m 200m length C. Spiering

  18. 18/60 Parameters for Cerenkov detectors Optical parameters: (for blue light ) > ~ 90m in ice, 50 ÷ 80m in sea water λ abs ~ 20m in lake water (Baikal) ~ 0.2 ÷ 25m in ice, > 100m in sea water λ scatt ~ 50m in lake water (Baikal) -negligible on ice -relevant on sea water (40kHz minimum on 8”PMT in noise ANTARES site) -absent in ice fouling -relevant on up-looking surfaces in sea water (ANTARES) on optical -negligible in NEMO site (long time measurement needed) modules -relevant in Baikal lake

  19. 19/60 Km3 neutrino detector workshop KM3 neutrino detectors – Cerenkov, radio, acoustic detections; effective area, energy Workshop II range, energy and angular resolution, discovery capabilities. Present status and future techniques Luciano Moscoso – Cerenkov detection Christian Spiering – Acoustic and radio detection Gianni Pavan (Centro Interdisciplinare di Bioacustica, Univ. Di Pavia – The km3 neutrino detector: an example of deep underwater multidisciplinary laboratory Sandra Zavatarelli – Present and future photon detectors for km3 neutrino telescope. Riccardo Papaleo - Study for a Km3 Cerenkov detector in Capo Passero site: mechanics, deployment, data transmission Gert-Jan Nooren – Electronic equipment required for a Km3 neutrino detector Vincent Bertin – Slow control for a Km3 neutrino detector Domenico Lo Presti - Development of a new electronics for the km3 neutrino detector.

  20. 20/60 Cerenkov-Radio-Acoustic

  21. 21/60 Different techniques � Ice: Amanda ⇒ IceCube � Lake water: Baikal � Sea water: • Nestor ⇒ 7 towers in Pylos, Greece • Antares ⇒ KM3 • Nemo ⇒ KM3 near Sicily, Italy L. Moscoso

  22. 22/60 Relevant parameters � Angular resolution (astronomy) � Energy resolution • Induced muons • Contained events � Effective area or volume L. Moscoso

  23. 23/60 AMANDA Presence of the two surface shower detectors, SPASE-1 & 2 allows to check the AMANDA pointing resolution and the efficiency estimations. σ θ ≅ 2.5° L. Moscoso

  24. 24/60 Angular Resolution (Antares) The angular resolution of the detector depends on – reconstruction algorithms – selection programs – timing accuracy (PMT timing error, positional error on OMs, timing calibration error) (including scattering) • At high energies the neutrino pointing accuracy is 0.4° or better including light scattering effects • Note: at high energy error is dominated by reconstruction errors, at low energy error by the angle between the muon and neutrino L. Moscoso

  25. AMANDA 25/60 L. Moscoso

  26. 26/60 Effective area for Antares trigger reconstruction selection L. Moscoso

  27. 27/60 Energy resolution in Antares Energy estimation based on the quantity of light detected by the optical modules. Energy resolution is a factor of 4-5. L. Moscoso

  28. 28/60 Detection of ν e ν µ I guess !!! Muons induced by ν µ : Tonino M T /M D ≈ (2.5km/D)ln(1.+E ν /(500GeV)) – 100-300 for the first gen. at 1 TeV – 50-100 (SuperK, Macro,…) – 10-20 for present projects – 2.5 for KM3 Energy determination: E Meas ∝ E 1/2 at HE – 1 TeV → 370 GeV – 1 PeV → 20 TeV – 1 EeV → 700 TeV L. Moscoso

  29. 29/60 Detection of ν e Contained ν e events: F. Bernard thesis (Antares) Worse angular resolution: σ θ ≅ 2° Better energy reconstruction: ∆ E/E ≅ 15% L. Moscoso

  30. Amanda/Antares 30/60 complementarity Amanda Antares L. Moscoso

  31. 31/60 Acoustic1

  32. 32/60 Acoustic2

  33. 33/60 Acoustic3

  34. 34/60 Acoustic4

  35. 35/60 Baikal : Cerenkov Acoustic5 and Acoustic set-up Z. Dzhilkibaev

  36. 36/60 Acoustic6 C. Spiering

  37. 37/60 Rice1 C. Spiering

  38. 38/60 Rice2 C. Spiering

  39. 39/60 Rice3 C. Spiering

  40. 40/60 Rice4 C. Spiering

  41. 41/60 IceCube

  42. 42/60 Baikal upgrading

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend