just the maths slides number 16 10 z transforms 3
play

JUST THE MATHS SLIDES NUMBER 16.10 Z-TRANSFORMS 3 (Solution of - PDF document

JUST THE MATHS SLIDES NUMBER 16.10 Z-TRANSFORMS 3 (Solution of linear difference equations) by A.J.Hobson 16.10.1 First order linear difference equations 16.10.2 Second order linear difference equations UNIT 16.10 - Z TRANSFORMS 3


  1. “JUST THE MATHS” SLIDES NUMBER 16.10 Z-TRANSFORMS 3 (Solution of linear difference equations) by A.J.Hobson 16.10.1 First order linear difference equations 16.10.2 Second order linear difference equations

  2. UNIT 16.10 - Z TRANSFORMS 3 THE SOLUTION OF LINEAR DIFFERENCE EQUATIONS Linear Difference Equations may be solved by constructing the Z-Transform of both sides of the equa- tion. 16.10.1 FIRST ORDER LINEAR DIFFERENCE EQUATIONS EXAMPLES 1. Solve the linear difference equation, u n +1 − 2 u n = (3) − n , given that u 0 = 2 / 5. Solution Using the second shifting theorem, Z { u n +1 } = z.Z { u n } − z. 2 5 . Taking the Z-Transform of the difference equation, z.Z { u n } − 2 z 5 .z − 2 Z { u n } = . z − 1 3 1

  3. On rearrangement, Z { u n } = 2 z z 5 . z − 2 + z − 1 � � ( z − 2) 3 − 3 3   ≡ 2 z 5 5 5 . z − 2 + z. +     z − 1   z − 2   3 z − 2 − 3 z z ≡ 5 . . z − 1 3 Taking the inverse Z-Transform of this function of z ,  (2) n − 3   5(3) − n   { u n } ≡  .     2. Solve the linear difference equation, u n +1 + u n = f ( n ) , given that  1 when n = 0;  f ( n ) ≡  0 when n > 0. and u 0 = 5. Solution Using the second shifting theorem, Z { u n +1 } = z.Z { u n } − z. 5 2

  4. Taking the Z-Transform of the difference equation, z.Z { u n } − 5 z + Z { u n } = 1 . On rearrangement, 1 5 z Z { u n } = z + 1 + z + 1 . Hence, 5 when n = 0;   { u n } =  ( − 1) n − 1 + 5( − 1) n ≡ 4( − 1) n when n > 0.   16.10.2 SECOND ORDER LINEAR DIFFERENCE EQUATIONS EXAMPLES 1. Solve the linear difference equation, u n +2 = u n +1 + u n , given that u 0 = 0 and u 1 = 1. Solution Using the second shifting theorem, Z { u n +1 } = z.Z { u n − z. 0 ≡ z.Z { u n } . 3

  5. and Z { u n +2 } = z 2 Z { u n } − z. 1 ≡ z 2 Z { u n } − z. Taking the Z-Transform of the difference equation, z 2 .Z { u n } − z = z.Z { u n } + Z { u n } . On rearrangement, z Z { u n } = z 2 − z − 1 . This may be written z Z { u n } = ( z − α )( z − β ) . From the quadratic formula, √ α, β = 1 ± 5 . 2 Using partial fractions, 1  z z  Z { u n } = z − α −  .     α − β z − β  Taking the inverse Z-Transform of this function of z gives  1  α − β [( α ) n − ( β ) n ]     { u n } ≡  .        4

  6. 2. Solve the linear difference equation, u n +2 − 7 u n +1 + 10 u n = 16 n, given that u 0 = 6 and u 1 = 2. Solution Using the second shifting theorem, Z { u n +1 } = z.Z { u n } − 6 z and Z { u n +2 } = z 2 .Z { u n } − 6 z 2 − 2 z. Taking the Z-Transform of the difference equation, 16 z z 2 .Z { u n }− 6 z 2 − 2 z − 7 [ z.Z { u n } − 6 z ]+10 Z { u n } = ( z − 1) 2 . On rearrangement, 16 z Z { u n } [ z 2 − 7 z + 10] − 6 z 2 + 40 z = ( z − 1) 2 . Hence, 6 z 2 − 40 z 16 z Z { u n } = ( z − 1) 2 ( z − 5)( z − 2) + ( z − 5)( z − 2) . 5

  7. Using partial fractions, 4 3 4 5   Z { u n } = z. z − 2 − z − 5 + ( z − 1) 2 +  .     z − 1  The solution to the difference equation is therefore { u n } ≡ { 4(2) n − 3(5) n + 4 n + 5 } . 3. Solve the linear difference equation, u n +2 + 2 u n = 0 , √ given that u 0 = 1 and u 1 = 2. Solution Using the second shifting theorem, √ Z { u n +2 } = z 2 Z { u n } − z 2 − z 2 . Taking the Z-Transform of the difference equation, √ z 2 Z { u n } − z 2 − z 2 + 2 Z { u n } = 0 . On rearrangement, √ √ √ Z { u n } = z 2 + z 2 ≡ z.z + 2 z + 2 √ √ z 2 + 2 ≡ z. 2) . z 2 + 2 ( z + j 2)( z − j 6

  8. Using partial fractions, √ √   2(1 + j ) 2(1 − j ) √ √ √ √ Z { u n } = z 2) +       j 2 2( z − j − j 2 2( z + j 2)   or  (1 − j ) (1 + j )  √ √ Z { u n } ≡ z. 2) +  .     2( z − j 2( z + j 2)  Hence, √ √ 1 2) n + 1   2) n   { u n } ≡ 2(1 − j )( j 2(1 + j )( − j       √ 1   2) n [(1 − j )( j ) n + (1 + j )( − j ) n ]   ≡ 2(       √ � √ √ 1  � 2 e − j π 4 .e j nπ 2 e j π 4 .e − j nπ 2) n 2 +   ≡ 2(   2     √ 1    e j (2 n − 1) π + e − j (2 n − 1) π   2) n +1   ≡ 2(   4 4      √  1 2) n +1 . 2 cos (2 n − 1) π      ≡ 2(   4       √  2) n +1 cos (2 n − 1) π      ≡  (  .   4     7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend