isotropic gaussian random fields on the sphere
play

Isotropic Gaussian random fields on the sphere Annika Lang Chalmers - PowerPoint PPT Presentation

Isotropic Gaussian random fields on the sphere Annika Lang Chalmers University of Technology & University of Gothenburg, Mathematical Sciences joint work with Christoph Schwab, ETH Zrich iGRFs approximation regularity stochastic


  1. Isotropic Gaussian random fields on the sphere Annika Lang Chalmers University of Technology & University of Gothenburg, Mathematical Sciences joint work with Christoph Schwab, ETH Zürich

  2. iGRFs approximation regularity stochastic processes & SPDEs Examples of random fields collection of random variables stochastic processes, e.g., Brownian motion solutions of stochastic (partial) differential equations solutions of random partial differential equations 300 250 200 150 Z 100 140 50 93 0 0 20 40 47 60 80 Y 100 120 0 X 140 0.014 0.012 0.010 0.008 0.006 0.004 0.002 0.000 -0.002 -0.004 -0.006 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Annika Lang October 31, 2013 p. 2

  3. iGRFs approximation regularity stochastic processes & SPDEs Outline isotropic Gaussian random fields approximation of random fields sample regularity of random fields stochastic processes & stochastic partial differential equations Annika Lang October 31, 2013 p. 3

  4. iGRFs approximation regularity stochastic processes & SPDEs Random fields on spheres (Ω , A , P ) probability space ( S 2 , d ) compact, metric space S 2 = { x ∈ R 3 , � x � = 1 } unit sphere d ( x, y ) = arccos � x, y � R 3 T : Ω × S 2 → R , A ⊗ B ( S 2 ) -measurable: real-valued random field on S 2 T Gaussian random field : ∀ k ∈ N , x 1 , . . . , x k ∈ S 2 , a 1 , . . . , a k ∈ R : � k i =1 a i T ( x i ) Gaussian T isotropic , Gaussian: ∀ k ∈ N , x 1 , . . . , x k ∈ S 2 , g ∈ SO (3) : ( T ( x 1 ) , . . . , T ( x k )) ∼ ( T ( gx 1 ) , . . . , T ( gx k )) Annika Lang October 31, 2013 p. 4

  5. iGRFs approximation regularity stochastic processes & SPDEs Spherical harmonic functions Legendre polynomials ( P ℓ , ℓ ∈ N 0 ) : ∂ ℓ P ℓ ( µ ) := 2 − ℓ 1 ∂µ ℓ ( µ 2 − 1) ℓ , µ ∈ [ − 1 , 1] ℓ ! associated Legendre polynomials ( P ℓm , ℓ ∈ N 0 , m = 0 , . . . , ℓ ) : P ℓm ( µ ) := ( − 1) m (1 − µ 2 ) m/ 2 ∂ m ∂µ m P ℓ ( µ ) , µ ∈ [ − 1 , 1] spherical harmonic functions ( Y ℓm , ℓ ∈ N 0 , m = − ℓ, . . . , ℓ ) : �� ( ℓ − m )! 2 ℓ +1 ( ℓ + m )! P ℓm (cos ϑ ) e imϕ m ≥ 0 4 π Y ℓm ( ϑ, ϕ ) := ( − 1) m Y ℓ − m ( ϑ, ϕ ) , m < 0 ( ϑ, ϕ ) ∈ [0 , π ] × [0 , 2 π ) Annika Lang October 31, 2013 p. 5

  6. iGRFs approximation regularity stochastic processes & SPDEs Spherical Laplacian — Laplace–Beltrami operator y = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) ∈ S 2 + (sin ϑ ) − 2 ∂ 2 ∆ S 2 = (sin ϑ ) − 1 ∂ � sin ϑ ∂ � ∂ϕ 2 . ∂ϑ ∂ϑ eigenvalues & eigenfunctions ∆ S 2 Y ℓm = − ℓ ( ℓ + 1) Y ℓm , ℓ ∈ N 0 , m = − ℓ, . . . , ℓ spaces of eigenfunctions H ℓ ( S 2 ) = span { Y ℓm , m = − ℓ, . . . , ℓ } eigenbasis ∞ � H := L 2 ( S 2 ) = H ℓ ( S 2 ) ℓ =0 Annika Lang October 31, 2013 p. 6

  7. iGRFs approximation regularity stochastic processes & SPDEs Theorem ( ❬▼❛r✐♥✉❝❝✐✱ P❡❝❛tt✐ ✶✶❪ ) T isotropic Gaussian random field Then: T has Karhunen–Loève expansion ℓ ∞ � � T = a ℓm Y ℓm , ℓ =0 m = − ℓ ( a ℓm , ℓ ∈ N 0 , m = 0 , . . . , ℓ ) random variables, ⊥ ⊥ Re a ℓm ⊥ ⊥ Im a ℓm ∼ N (0 , A ℓ / 2) Re a ℓ 0 ∼ N (0 , A ℓ ) , Im a ℓ 0 = 0 Re a 00 ∼ N ( E ( T )2 √ π, A 0 ) ( a ℓm , ℓ ∈ N 0 , m = − ℓ, . . . , − 1) given by Re a ℓm = ( − 1) m Re a ℓ − m Im a ℓm = ( − 1) m +1 Im a ℓ − m Annika Lang October 31, 2013 p. 7

  8. iGRFs approximation regularity stochastic processes & SPDEs Lemma T centered, isotropic Gaussian random field ℓ ∈ N , m = 1 , . . . , ℓ , ϑ ∈ [0 , π ] : � ( ℓ − m )! 2 ℓ + 1 L ℓm ( ϑ ) := ( ℓ + m )! P ℓm (cos ϑ ) 4 π (( X 1 ℓm , X 2 ℓm ) , ℓ ∈ N 0 , m = 0 , . . . , ℓ ) , ⊥ ⊥ X i ℓm ∼ N (0 , 1) , i = 1 , 2 , m � = 0 X 2 ℓ 0 = 0 y = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) ∞ �� � A ℓ X 1 = ⇒ T ( y ) ∼ ℓ 0 L ℓ 0 ( ϑ ) ℓ =0 ℓ � � � L ℓm ( ϑ )( X 1 ℓm cos( mϕ ) + X 2 + 2 A ℓ ℓm sin( mϕ )) m =1 Annika Lang October 31, 2013 p. 8

  9. iGRFs approximation regularity stochastic processes & SPDEs κ �� T κ ( y ) := � A ℓ X 1 ℓ 0 L ℓ 0 ( ϑ ) ℓ =0 ℓ � � � L ℓm ( ϑ )( X 1 ℓm cos( mϕ ) + X 2 + 2 A ℓ ℓm sin( mϕ )) m =1 Theorem ( ❬▲✳✱ ❙❝❤✇❛❜ ✶✸❪ ) T centered, isotropic Gaussian random field ∃ C > 0 , α > 2 , ℓ 0 ∈ N : ∀ ℓ > ℓ 0 : A ℓ ≤ C · ℓ − α Then: 1. ∀ 0 < p < + ∞ : ∃ ˆ C p > 0 : ∀ κ ∈ N : � T − T κ � L p (Ω; H ) ≤ ˆ C p · κ − ( α − 2) / 2 2. asymptotically: ∀ β < ( α − 2) / 2 : � T − T κ � H ≤ κ − β , P -a.s. Annika Lang October 31, 2013 p. 9

  10. iGRFs approximation regularity stochastic processes & SPDEs L 2 error, 1000 Monte Carlo samples α = 3 α = 5 1 0 10 10 L 2 error L 2 error O( κ 1/2 ) O( κ 3/2 ) −1 10 0 10 L 2 error L 2 error −2 10 −1 10 −3 10 −2 −4 10 10 0 1 2 0 1 2 10 10 10 10 10 10 number of series elements κ number of series elements κ (a) α = 3 (b) α = 5 Figure: error depending on series truncation Annika Lang October 31, 2013 p. 10

  11. iGRFs approximation regularity stochastic processes & SPDEs Sample error α = 3 α = 5 0 10 error error O( κ 1/2 ) O( κ 3/2 ) 0 10 −1 −0.2 10 10 path error path error −0.4 10 −2 10 −0.6 10 −0.8 10 −3 10 0 1 2 0 1 2 10 10 10 10 10 10 number of series elements κ number of series elements κ (a) α = 3 (b) α = 5 Figure: error depending on series truncation Annika Lang October 31, 2013 p. 11

  12. iGRFs approximation regularity stochastic processes & SPDEs Second moments — covariance kernels mixed second moments k T : S 2 → R ∞ ℓ � � k T ( x, y ) := E ( T ( x ) T ( y )) = A ℓ Y ℓm ( x ) Y ℓm ( y ) ℓ =0 m = − ℓ ∞ 2 ℓ + 1 � = A ℓ P ℓ ( � x, y � R 3 ) 4 π ℓ =0 k : [0 , π ] → R as function of distance r = d ( x, y ) ∞ 2 ℓ + 1 � k ( r ) := A ℓ P ℓ (cos r ) 4 π ℓ =0 k I : [ − 1 , 1] → R as function of inner product µ = � x, y � R 3 k I ( µ ) := k (arccos µ ) x, y ∈ S 2 = ⇒ k T ( x, y ) = k ( d ( x, y )) = k I ( � x, y � R 3 ) , Annika Lang October 31, 2013 p. 12

  13. iGRFs approximation regularity stochastic processes & SPDEs Decay power spectrum ⇐ ⇒ regularity kernel Proposition ( ❬▲✳✱ ❙❝❤✇❛❜ ✶✸❪ ) n ∈ N 0 ⇒ (1 − µ 2 ) n/ 2 ∂ n ( ℓ n +1 / 2 A ℓ , ℓ ≥ n ) ∈ ℓ 2 ( N 0 ) ⇐ ∂µ n k I ( µ ) ∈ L 2 ( − 1 , 1) i.e., � 1 2 ∂ n 1 2 ℓ + 1 � � ℓ 2 n < + ∞ ⇐ (1 − µ 2 ) n dµ < + ∞ � A 2 � � ⇒ ∂µ n k I ( µ ) ℓ � � (4 π ) 2 2 − 1 � � ℓ ≥ n extension to non-integers and fractional weighted Sobolev spaces Annika Lang October 31, 2013 p. 13

  14. iGRFs approximation regularity stochastic processes & SPDEs Sample regularity Definition X , Y random fields on S 2 Y modification of X : ∀ x ∈ S 2 : P ( X ( x ) = Y ( x )) = 1 Theorem ( ❬▲✳✱ ❙❝❤✇❛❜ ✶✸❪ ) T isotropic Gaussian random field with ∞ A ℓ ℓ 1+ β < + ∞ � ℓ =0 1. β ∈ (0 , 2] : ∀ γ < β/ 2 ∃ continuous modification with Hölder exponent γ 2. β > 0 : ∀ k < β/ 2 − 1 ∃ k -times continuously differentiable modification Annika Lang October 31, 2013 p. 14

  15. iGRFs approximation regularity stochastic processes & SPDEs Idea of proof Lemma ∞ A ℓ ℓ 1+ β < + ∞ , β ∈ [0 , 2] � ∀ r ∈ [0 , π ] : | k (0) − k ( r ) | ≤ C β r β = ⇒ ℓ =0 E ( | T ( x ) − T ( y ) | 2 p ) ≤ C β,p d ( x, y ) βp = ⇒ Theorem (Kolmogorov–Chentsov theorem ❬▲✳✱ ❙❝❤✇❛❜ ✶✸❪ ) T random field on S 2 ∃ p > 0 , ǫ ∈ (0 , 1] , C > 0 : E ( | T ( x ) − T ( y ) | p ) ≤ Cd ( x, y ) 2+ ǫp = ⇒ ∃ continuous modification which is locally Hölder continuous with exponent γ ∈ (0 , ǫ ) Annika Lang October 31, 2013 p. 15

  16. iGRFs approximation regularity stochastic processes & SPDEs Ice crystals & Sahara dust particles radius: lognormal random field exp( T ) same regularity as isotropic Gaussian random field T ❬▲✳✱ ❙❝❤✇❛❜ ✶✸❪ Annika Lang October 31, 2013 p. 16

  17. iGRFs approximation regularity stochastic processes & SPDEs Random fields − → stochastic processes Brownian motion – Wiener process W = ( W ( t ) , t ≥ 0) W ( t ) = ( W ( t ) − W ( t n )) + ( W ( t n ) − W ( t n − 1 )) + · · · + ( W ( t 1 ) − W (0)) independent increments ( W ( t n ) − W ( t n − 1 )) ∼ N (0 , t n − t n − 1 ) = N (0 , ∆ t ) generate N (0 , ∆ t ) -distributed random numbers resp. N (0 , ∆ tQ ) -distributed random field Annika Lang October 31, 2013 p. 17

  18. iGRFs approximation regularity stochastic processes & SPDEs Stochastic process probability space (Ω , A , P ) filtration F = ( F t , t ≥ 0) satisfies "‘usual conditions"’ separable Hilbert space U — e.g., R d , L 2 ( D ) , H α ( D ) stochastic process X = ( X ( t ) , t ≥ 0) with values in U , e.g., U = L 2 ( S 2 ) : X = ( X ( t, x ) , t ≥ 0 , x ∈ S 2 ) with X ( t, x, ω ) ∈ R property: (often) P -a.s. nowhere differentiable Annika Lang October 31, 2013 p. 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend