introduction to aerosols introduction to aerosols drag
play

! Introduction to Aerosols Introduction to Aerosols ! ! Drag Forces - PowerPoint PPT Presentation

! Introduction to Aerosols Introduction to Aerosols ! ! Drag Forces Drag Forces ! ! Cunningham Corrections Cunningham Corrections ! ! Lift Forces Lift Forces ! ME 637 Ahmadi ME 637 Ahmadi Aerosols are suspension of Aerosols are


  1. ! Introduction to Aerosols Introduction to Aerosols ! ! Drag Forces Drag Forces ! ! Cunningham Corrections Cunningham Corrections ! ! Lift Forces Lift Forces ! ME 637 Ahmadi ME 637 Ahmadi � Aerosols are suspension of � Aerosols are suspension of solid or solid or Aerosols Air liquid particles in a gas. liquid particles in a gas. Number Density 100-10 5 10 19 (Number/cm) � Dust, smoke, mists, fog, haze, and � Dust, smoke, mists, fog, haze, and Mean Temperature 240 – 310 240 – 310 smog are common aerosols. . smog are common aerosols (K) 0.06 µ m Mean Free Path Greater than 1 m � Aerosol particles are found � Aerosol particles are found 2 10 -4 µ m 0.01 – 10 µ m × Particle Radius in different shapes. . in different shapes 10 -18 - 10 -9 Particle Mass (g) 4.6 10 -23 × Particle Charge 0 – 100 Weakly Ionized (Elementary Charge Single Charge Units) ME 637 Ahmadi ME 637 Ahmadi 1

  2. λ = Mean Free Path λ Knudsen Number λ = Mean Free Path ν = = Kinematic Kinematic Viscosity Viscosity Knudsen Number 2 ν = Kn d d = Particle Diameter D = Diffusivity d = Particle Diameter D = Diffusivity Mach Number Mach Number v − p f | v | = M p = Particle Velocity f c v p = Particle Velocity v’ ’ = Thermal Velocity = Thermal Velocity v v Schmidt Number Schmidt Number ν f λ 2 n d = = f = Fluid (Air) Velocity Sc p v f = Fluid (Air) Velocity n = Number Density v n = Number Density D 4 f f Brown Number Brown Number v p , 2 | v ' p | c = Speed of Sound c = Speed of Sound = 1 / 2 = Br ( ) f , 2 f v | v ' | p − f Reynolds Number Reynolds Number | v v | d 4 M = = Re ν K n ME 637 Ahmadi ME 637 Ahmadi Particle Diameter, µm 4 10 − 4 10 − 3 10 − 2 10 − 1 0 1 2 3 10 10 10 10 10 1 kT Electro. λ = = Infrared Microwaves X-Ray UV Vis Wave π 2 π 2 2 nd 2 d P Solid Fume Dust Definition m m Mist Spray Liquid Clay Silt Sand Gravel Soil p Molecular Molecular f = × -23 k 1.38 10 J / K f Atmospheric Smog Cloud/Fog Mist Rain Diameter Diameter Typical Viruses Bacteria Hair Particles Smoke Coal Dust Beach Sand Microscopy 23 . 1 T Size λ µ = Electron Microscopy Sieving Air ( m ) Air Analysis Ultra Centrifuge Sedimentation P methods ME 637 Ahmadi ME 637 Ahmadi 2

  3. µm Particle Diameter, 4 10 − 10 − 10 − 10 − 10 4 3 2 1 10 0 10 1 10 2 10 3 π F = 3 µUd Ultrasonic Settling Chamber Stokes Stokes Centrifuge Gas Cleaning Air Filter Method HE Air Filter Impact Separator F 24 Thermal Separator = = C D Drag Drag Electrostatic Separator D 1 Re ρ 2 Coefficient U A Coefficient × − 2 10 − 5 × − 9 × − 11 5 10 2 10 2 10 Air Diffusion 2 Coeff. cm 2 /s Water × − 12 × − × − × − 5 10 5 10 6 5 10 8 5 10 10 Reynolds Reynolds × − 10 − 6 2 10 4 0 . 6 Terminal 600 ρ = Ud Air Velocity cm/s − Number Number Re 10 − 10 × − 7 × 3 Water 6 10 6 10 12 S=2 µ ME 637 Ahmadi ME 637 Ahmadi + 24 [ 1 3 Re/ 16 ] = C D Oseen Oseen Re C D + 0 . 687 24 [ 1 0 . 15 Re ] < < 1 Re 1000 = C D Re Newton Newton C D = 0 . 4 Re 3 < < × 5 10 Re 2 . 5 10 ME 637 Ahmadi ME 637 Ahmadi 3

  4. 1000 For 1000 > For 1000 > Kn Kn > 0 > 0 πµ 3 Ud 100 Experiment Stokes Stokes- -Cunningham Cunningham = F D Drag Drag C CD Oseen 10 c Eq. (5) Stokes Cunningham Cunningham Newton 1 Correction Correction 0 λ 2 0 1 10 100 1000 10000 = + + − λ 1 . 1 d / 2 C 1 [ 1 . 257 0 . 4 e ] Re c d Predictions of various models for drag coefficient for a spherical particle. al particle. Predictions of various models for drag coefficient for a spheric ME 637 Ahmadi ME 637 Ahmadi c Variations of C c with d for λ λ = 0.07 = 0.07 µ µm m 1000 Variations of C c with d for Diameter, µm C 100 c 10 µm 1.018 Cc 10 1 µm 1.176 0.1 µm 3.015 1 0.01 µm 23.775 0.001 0.01 0.1 1 10 100 Kn 0.001 µm 232.54 Variation of Cunningham correction with Knudsen number. Variation of Cunningham correction with Knudsen number. ME 637 Ahmadi ME 637 Ahmadi 4

  5. = πµ F 3 Ud K + µ µ f p 1 2 / 3 = πµ f F 3 Ud D e D + µ µ f p 1 / 6 = 1 / 3 d ( Volume ) e π = πµ f F 2 Ud For Bubbles For Bubbles D K=Correction Factor K=Correction Factor ME 637 Ahmadi ME 637 Ahmadi p d u τ = − + τ f p ( u u ) g Drag dt Gravity Relaxation Time Relaxation Time Equation of Motion Equation of Motion 2 ρ p 2 mC d C Sd C ρ p τ = = = c c c = πµ p S d u 3 d ρ f πµ µ ν = f − p + 3 d 18 18 m ( u u ) m g dt C c τ ≈ × − µ 6 2 ( s ) 3 10 d ( m ) ME 637 Ahmadi ME 637 Ahmadi 5

  6. Stopping Distance = Penetration distance for Stopping Distance = Penetration distance for − τ p = f + τ − t / u ( u g )( 1 e ) an initial velocity of u u o an initial velocity of o − τ p = t / = τ − − t τ p p / u u e x u ( 1 e ) Terminal Velocity = Equilibrium Velocity after Large Time Terminal Velocity = Equilibrium Velocity after Large Time o o ρ p 2 d gC = τ p p x u = τ = t u g c o µ 18 µ ≈ µ p 2 x ( m ) 3 d ( m ) t µ ≈ 2 µ u ( m / s ) 30 d ( m ) ME 637 Ahmadi ME 637 Ahmadi Diameter, Terminal τ sec Stopping Stopping − τ = + τ − p p p t / x x u ( 1 e ) µm Velocity Distance Distance o o u= 1 m/s u= 10 m/s − τ + + τ − τ − f t / ( u g )[ t ( 1 e )] 4 × 10 -8 0.05 0.39 µ m/s 0.04 µ m 0.0004 mm 9.1 × 10 -8 0.1 0.93 µ m/s 0.092 µ m 0.0009 mm 1 × 10 -6 0.5 10.1 µ m/s 1.03 µ m 0.0103 mm Components Components 3.6 × 10 -6 1 35 µ m/s 3.6 µ m 0.0357 mm τ g p f τ = τ − − − t / τ 7.9 × 10 -5 x / u [ t / ( 1 e )] 5 0.77 mm/s 78.6 µ m 0.786 mm α = f τ u 3.1 × 10 -4 10 3.03 mm/s 309 µ m 3.09 mm τ = − α τ − − − τ p f t / y / u [ t / ( 1 e )] 7.6 × 10 -3 50 7.47 cm/s 7.62 mm 76.2 mm ME 637 Ahmadi ME 637 Ahmadi 6

  7. 0 0 α =0.1 α =0.1 -2 -2 -4 -4 α =1 y/utau y/utau α =1 -6 -6 -8 -8 α =2 -10 -10 α =2 -12 -12 0 1 2 3 4 5 6 0 1 2 3 4 5 6 x/utau t/tau Variations of the particle vertical position with time. Variations of the particle vertical position with time. Sample particle trajectories. Sample particle trajectories. ME 637 Ahmadi ME 637 Ahmadi p πµ p d u 3 d 1 d u 1 + = − + − a f p f + τ = f − p + τ − ( m m ) ( u u ) ( m m ) g ( 1 ) ( u u ) g ( 1 ) dt C 2 S dt S c π ρ 3 f d Terminal Velocity Terminal Velocity f = m Fluid Mass Fluid Mass 6 ρ ρ p 2 f 1 d gC = τ − = − t u g ( 1 ) c ( 1 ) 1 a = f µ ρ p m m . S 18 Apparent Mass Apparent Mass 2 ME 637 Ahmadi ME 637 Ahmadi 7

  8. Lift − f p Ω 2 | u u | d d = << = << R 1 R 1 Ω es ν e ν u f u p 1 / 2 R γ 2 eG >> = & d = << ε 1 R 1 eG ν R Saffman (1965, 1968) (1965, 1968) Saffman es f f du du McLaughlin (1991) = ρν 1 / 2 2 f − p 1 / 2 McLaughlin (1991) F 1 . 615 d ( u u ) | | sgn( ) L ( Saff ) dy dy ME 637 Ahmadi ME 637 Ahmadi McLaughlin (1991) McLaughlin (1991) Lift ⎧ − − ε 2 ε >> 1 0 . 287 for 1 F = L ⎨ − ε ε − ε << F 5 2 140 ln( ) for 1 ⎩ L ( Saff ) Leighton and Leighton and = ρ γ 4 2 F 0 . 576 d & Acrivos (1985) (1985) − Acrivos L ( L A ) = ρν γ 1 / 2 3 3 / 2 Saffman F 0 . 807 d & Saffman L ( Saff ) ME 637 Ahmadi ME 637 Ahmadi 8

  9. * 2 1.00E+03 u F * du γ = + = F L Experiment + = 1.00E+02 d L ν ρν 2 ν 1.00E+01 Saffman Mollinger 1.00E+00 Fl+ 1.00E-01 + = + + = + Hall 4 3 F 0 . 576 d F 0 . 807 d 1.00E-02 − L ( L A ) L ( Saff ) 1.00E-03 Leighton 1.00E-04 Hall (1988) Hall (1988) 1.00E-05 Mollinger Mollinger and and Nieuwstadt Nieuwstadt (1996) (1996) 0.1 1 10 + = + 2 . 31 d+ F 4 . 21 d + = + 1 . 87 F 15 . 57 d L ( Hall ) L ( MN ) ME 637 Ahmadi ME 637 Ahmadi ! Introduction to Aerosols Introduction to Aerosols ! ! Drag Forces Drag Forces ! ! Cunningham Corrections Cunningham Corrections ! ! Lift Forces Lift Forces ! ME 637 Ahmadi ME 637 Ahmadi 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend